Autophagy plays an important role in cancer. Many studies have demonstrated that autophagy-related genes (ARGs) can act as a prognostic signature for some cancers, but little has been known in low-grade gliomas (LGG). In our study, we aimed to establish a prognostical model based on ARGs and find prognostic risk-related key genes in LGG. In the present study, a prognostic signature was constructed based on a total of 8 ARGs (MAPK8IP1, EEF2, GRID2, BIRC5, DLC1, NAMPT, GRID1, and TP73). It was revealed that the higher the risk score, the worse was the prognosis. Time-dependent ROC analysis showed that the risk score could precisely predict the prognosis of LGG patients. Additionally, four key genes (TGF2, SERPING1, SERPINE1, and TIMP1) were identified and found significantly associated with OS of LGG patients. Besides, they were also discovered to be strongly related to six types of immune cells which infiltrated in LGG tumor. Taken together, the present study demonstrated the promising potential of the ARG risk score formula as an independent factor for LGG prediction. It also provided the autophagy-related signature of prognosis and potential therapeutic targets for the treatment of LGG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592714 | PMC |
http://dx.doi.org/10.1155/2021/7918693 | DOI Listing |
Viruses
November 2024
C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
SARS-CoV-2 infection induces a humoral immune response, producing virus-specific antibodies such as IgM, IgG, and IgA. IgA antibodies are present at mucosal sites, protecting against respiratory and other mucosal infections, including SARS-CoV-2, by neutralizing viruses or impeding attachment to epithelial cells. Since SARS-CoV-2 spreads through the nasopharynx, the specific IgAs of SARS-CoV-2 are produced quickly after infection, effectively contributing to virus neutralization.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Innovative Drug R&D Center, Innovative Drug Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
: Breast cancer in women is the most commonly diagnosed and most malignant tumor. Although luminal A breast cancer (LumA) has a relatively better prognosis, it still has a persistent pattern of recurrence. (Curtis) P.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
School of Medicine, Shanghai University, Shanghai 200444, China.
Background/objectives: Breast cancer is the second most common malignancy worldwide and poses a significant threat to women's health. However, the prognostic biomarkers and therapeutic targets of breast cancer are unclear. A prognostic model can help in identifying biomarkers and targets for breast cancer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany.
The complex and heterogeneous genomic landscape of multiple myeloma (MM) and many of its clinical and prognostic implications remains to be understood. In other cancers, such as breast cancer, using whole-exome sequencing (WES) and molecular signatures in clinical practice has revolutionized classification, prognostic prediction, and patient management. However, such integration is still in its early stages in MM.
View Article and Find Full Text PDFCells
December 2024
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!