SHP2 mediates signaling from multiple receptor tyrosine kinases (RTKs) to extracellular signal-regulated kinase (ERK) and Ser and Thr kinase AKT, and its inhibitors offer an unprecedented opportunity for cancer treatment. Although the ERK signaling variation after SHP2 inhibition has been well investigated, the AKT signaling variation in colorectal carcinoma (CRC) is still unknown. Therefore, we performed immunohistochemistry and bioinformatics analyses to explore the significance of p-SHP2 in CRC. A panel of CRC cell lines with the SHP2 inhibitor, SHP099, was used to assess the effects on viability and signaling. The inhibitors of AKT and focal adhesion kinase (FAK) signaling were examined in combination with SHP099 as potential strategies to enhance the efficacy and overcome resistance. Frequent resistance to the SHP2 inhibitor was observed in CRC cells, even in those without RAS mutations. We observed rapid adaptive reactivation of the AKT pathway in response to SHP2 inhibition, possibly driven by the reactivation of RTKs or released -FAK. High baseline p-FAK may also be associated with CRC cell resistance to SHP2 inhibition. Co-inhibition of FAK abrogated the feedback reactivation of AKT in response to SHP2 inhibition. Moreover, the combined inhibition of SHP2 with AKT or FAK resulted in sustained AKT pathway suppression and improved antitumor efficacy and . Our study found that reactivation of the AKT pathway is a key mechanism of adaptive resistance to SHP2 inhibition, highlighting the potential significance of AKT and FAK inhibition strategies to enhance the efficacy of SHP2 inhibitors in CRC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591248PMC
http://dx.doi.org/10.3389/fphar.2021.739501DOI Listing

Publication Analysis

Top Keywords

shp2 inhibition
24
resistance shp2
16
reactivation akt
12
akt pathway
12
shp2
11
akt
9
inhibition
8
colorectal carcinoma
8
signaling variation
8
crc cell
8

Similar Publications

Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) plays a dual role in cancer initiation and progression. Identifying signals that modulate the function of SHP2 can improve current therapeutic approaches for IFN-α/β in HCC. We showed that cAMP-dependent protein kinase A (PKA) suppresses IFN-α/β-induced JAK/STAT signaling by increasing the phosphatase activity of SHP2, promoting the dissociation of SHP2 from the receptor for activated C-kinase 1 (RACK1) and binding to STAT1.

View Article and Find Full Text PDF

To investigate how PD-L1 monoclonal antibodies (mAbs) affect the left ventricular function in mice with myocardial infarction (MI) and through what mechanisms they exert their effects. In vivo experiments were conducted using 27 female BALB/c mice, which were divided equally into 3 groups. Cardiac function was assessed by ultrasound.

View Article and Find Full Text PDF

Unlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.

View Article and Find Full Text PDF

Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases.

Transl Psychiatry

January 2025

Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.

The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!