In pasture-based systems, there are nutritional and climatic challenges exacerbated across lactation; thus, dairy cows require an enhanced adaptive capacity compared with cows in confined systems. We aimed to evaluate the effect of lactation stage (21 vs. 180 days in milk, DIM) and Holstein genetic strain (North American Holstein, NAH, n = 8; New Zealand Holstein, NZH, n = 8) on metabolic adaptations of grazing dairy cows through plasma metabolomic profiling and its association with classical metabolites. Although 67 metabolites were affected (FDR < 0.05) by DIM, no metabolite was observed to differ between genetic strains while only alanine was affected (FDR = 0.02) by the interaction between genetic strain and DIM. However, complementary tools for time-series analysis (ASCA analysis, MEBA ranking) indicated that alanine and the branched-chain amino acids (BCAA) differed between genetic strains in a lactation-stage dependent manner. Indeed, NZH cows had lower (P-Tukey < 0.05) plasma concentrations of leucine, isoleucine and valine than NAH cows at 21 DIM, probably signaling for greater insulin sensitivity. Metabolic pathway analysis also revealed that, independently of genetic strains, AA metabolism might be structurally involved in homeorhetic changes as 40% (19/46) of metabolic pathways differentially expressed (FDR < 0.05) between 21 and 180 DIM belonged to AA metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599868 | PMC |
http://dx.doi.org/10.1038/s41598-021-01564-0 | DOI Listing |
BMC Microbiol
December 2024
Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.
View Article and Find Full Text PDFBMC Microbiol
December 2024
Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
Background: Klebsiella pneumoniae is a clinically relevant pathogen that has raised considerable public health concerns. This study aims to determine the presence of beta-lactamase genes and perform molecular genotyping of multidrug-resistant (MDR) K. pneumoniae clinical isolates.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
Department of Microbiology and Immunology, Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
This study investigated the effects of bamboo shoot extract (Bambusa vulgaris) as a feed additive on the health profiles and infection resistance of Nile tilapia (Oreochromis niloticus) against Pseudomonas putida. Bamboo shoot extract was added at levels of 0 g, 40 g, and 60 g per 1000 g of diet over a 60-day period. The fish were then challenged with a pathogenic P.
View Article and Find Full Text PDFActa Trop
December 2024
Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan province, China.; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China.. Electronic address:
Bartonella spp. are gram-negative bacteria recognized as zoonotic pathogens of wide spectrum mammals. Rodents are recognized as a natural reservoir of pathogens, and many Bartonella species transmitted by various blood-sucking arthropods have been detected in various rodents populations.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!