Background: Current methods fail to accurately predict women at greatest risk of developing fetal growth restriction (FGR) or related adverse outcomes, including stillbirth. Sexual dimorphism in these adverse pregnancy outcomes is well documented as are sex-specific differences in gene and protein expression in the placenta. Circulating maternal serum microRNAs (miRNAs) offer potential as biomarkers that may also be informative of underlying pathology. We hypothesised that FGR would be associated with an altered miRNA profile and would differ depending on fetal sex.
Methods: miRNA expression profiles were assessed in maternal serum (> 36 weeks' gestation) from women delivering a severely FGR infant (defined as an individualised birthweight centile (IBC) < 3rd) and matched control participants (AGA; IBC = 20-80th), using miRNA arrays. qPCR was performed using specific miRNA primers in an expanded cohort of patients with IBC < 5th (n = 15 males, n = 16 females/group). Maternal serum human placental lactogen (hPL) was used as a proxy to determine if serum miRNAs were related to placental dysfunction. In silico analyses were performed to predict the potential functions of altered miRNAs.
Results: Initial analyses revealed 11 miRNAs were altered in maternal serum from FGR pregnancies. In silico analyses revealed all 11 altered miRNAs were located in a network of genes that regulate placental function. Subsequent analysis demonstrated four miRNAs showed sexually dimorphic patterns. miR-28-5p was reduced in FGR pregnancies (p < 0.01) only when there was a female offspring and miR-301a-3p was only reduced in FGR pregnancies with a male fetus (p < 0.05). miR-454-3p was decreased in FGR pregnancies (p < 0.05) regardless of fetal sex but was only positively correlated to hPL when the fetus was female. Conversely, miR-29c-3p was correlated to maternal hPL only when the fetus was male. Target genes for sexually dimorphic miRNAs reveal potential functional roles in the placenta including angiogenesis, placental growth, nutrient transport and apoptosis.
Conclusions: These studies have identified sexually dimorphic patterns for miRNAs in maternal serum in FGR. These miRNAs may have potential as non-invasive biomarkers for FGR and associated placental dysfunction. Further studies to determine if these miRNAs have potential functional roles in the placenta may provide greater understanding of the pathogenesis of placental dysfunction and the differing susceptibility of male and female fetuses to adverse in utero conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597318 | PMC |
http://dx.doi.org/10.1186/s13293-021-00405-z | DOI Listing |
BMC Pregnancy Childbirth
January 2025
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
Background: Inadequate and excessive gestational weight gain (GWG) defined by the Institute of Medicine (IOM) has been associated with preterm birth. However, studies demonstrate inconsistent associations.
Objectives: We examined the associations between categorical and continuous total GWG and moderate to late preterm birth (32-<37 weeks), and evaluated differences in these associations by pre-pregnancy BMI.
Clin Chim Acta
January 2025
Biochemistry Department, Centro Universitário Faculdade de Medicina ABC (FMABC), Santo André, São Paulo, Brazil.
Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF).
View Article and Find Full Text PDFStem Cell Res
December 2024
Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:
Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.
View Article and Find Full Text PDFBMJ Open Respir Res
December 2024
Department of Design Sciences, Lund University, Lund, Sweden
Rationale: Preterm infants diagnosed with bronchopulmonary dysplasia (BPD) are thought to have fewer and larger alveoli than their term peers, but it is unclear to what degree this persists later in life.
Objectives: To investigate to what degree the distal airspaces are enlarged in adolescents born preterm and to evaluate the new Airspace Dimension Assessment (AiDA) method in investigating this group.
Methods: We investigated 41 adolescents between 15 and 17 years of age, of whom 25 were born very preterm (a gestational age <31 weeks, with a mean of 26 weeks) and 16 were term-born controls.
BMJ Open Ophthalmol
December 2024
Ophthalmology, Royal Hospital for Children, Glasgow, UK.
Background: Very premature infants screened for retinopathy of prematurity (ROP) that do not develop ROP still experience serious visual developmental challenges, and while it is recommended that all children in the UK are offered preschool visual screening, we aimed to explore whether this vulnerable group requires dedicated follow-up.
Methods: We performed a real-world retrospective observational cohort study of children previously screened for ROP in NHS Greater Glasgow and Clyde (Scotland) between 2013 and 2015. We excluded those with any severity of ROP identified during screening.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!