Deep graph representations embed network information for robust disease marker identification.

Bioinformatics

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.

Published: January 2022

AI Article Synopsis

Article Abstract

Motivation: Accurate disease diagnosis and prognosis based on omics data rely on the effective identification of robust prognostic and diagnostic markers that reflect the states of the biological processes underlying the disease pathogenesis and progression. In this article, we present GCNCC, a Graph Convolutional Network-based approach for Clustering and Classification, that can identify highly effective and robust network-based disease markers. Based on a geometric deep learning framework, GCNCC learns deep network representations by integrating gene expression data with protein interaction data to identify highly reproducible markers with consistently accurate prediction performance across independent datasets possibly from different platforms. GCNCC identifies these markers by clustering the nodes in the protein interaction network based on latent similarity measures learned by the deep architecture of a graph convolutional network, followed by a supervised feature selection procedure that extracts clusters that are highly predictive of the disease state.

Results: By benchmarking GCNCC based on independent datasets from different diseases (psychiatric disorder and cancer) and different platforms (microarray and RNA-seq), we show that GCNCC outperforms other state-of-the-art methods in terms of accuracy and reproducibility.

Availability And Implementation: https://github.com/omarmaddouri/GCNCC.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btab772DOI Listing

Publication Analysis

Top Keywords

graph convolutional
8
identify highly
8
protein interaction
8
independent datasets
8
disease
5
gcncc
5
deep
4
deep graph
4
graph representations
4
representations embed
4

Similar Publications

Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.

View Article and Find Full Text PDF

In sports training, personalized skill assessment and feedback are crucial for athletes to master complex movements and improve performance. However, existing research on skill transfer predominantly focuses on skill evaluation through video analysis, addressing only a single facet of the multifaceted process required for skill acquisition. Furthermore, in the limited studies that generate expert comments, the learner's skill level is predetermined, and the spatial-temporal information of human movement is often overlooked.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is a potent glycoprotein that plays a crucial role in regulating innate and adaptive immunity, as well as metabolism. The expression and release of IL-6 are closely correlated with the severity of various diseases. IL-6-inducing peptides are critical for the development of immunotherapy and diagnostic biomarkers for some diseases.

View Article and Find Full Text PDF

Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.

Biomedicines

January 2025

Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.

Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time.

View Article and Find Full Text PDF

: Alzheimer's disease is a progressive neurological condition marked by a decline in cognitive abilities. Early diagnosis is crucial but challenging due to overlapping symptoms among impairment stages, necessitating non-invasive, reliable diagnostic tools. : We applied information geometry and manifold learning to analyze grayscale MRI scans classified into No Impairment, Very Mild, Mild, and Moderate Impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!