Enhancement of the fluorescence properties introducing the tetraphenylethylene chromophores into a novel Mn-organic framework with a rare [Mn(μ-OH)] cluster.

Dalton Trans

Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China.

Published: December 2021

By employing a tetraphenylethylene (TPE)-based tetracarboxylate linker, tetrakis(4-carboxyphenyl)ethylene (HTCPE), we herein constructed a novel luminescent Mn-MOF based on a rare [Mn(μ-OH)] cluster (SQNU-55). Interestingly, the TPE-based SQNU-55 not only provides a good material for the blue LED device, but also has a better luminescent molecular thermometer for low-temperature detection.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt03349bDOI Listing

Publication Analysis

Top Keywords

rare [mnμ-oh]
8
[mnμ-oh] cluster
8
enhancement fluorescence
4
fluorescence properties
4
properties introducing
4
introducing tetraphenylethylene
4
tetraphenylethylene chromophores
4
chromophores novel
4
novel mn-organic
4
mn-organic framework
4

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Clustering Cu-S based compounds using periodic table representation and compositional Wasserstein distance.

Sci Rep

December 2024

Key Laboratory of Computing Power Network and Information Security, Shandong Computer Science Center (National Supercomputing Center in Jinan), Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, Shandong, P. R. China.

Crystal structure similarity is useful for the chemical analysis of nowadays big materials databases and data mining new materials. Here we propose to use two-dimensional Wasserstein distance (earth mover's distance) to measure the compositional similarity between different compounds, based on the periodic table representation of compositions. To demonstrate the effectiveness of our approach, 1586 Cu-S based compounds are taken from the inorganic crystal structure database (ICSD) to form a validation dataset.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!