Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) materials are known to have low-friction interfaces by reducing the energy dissipated by sliding contacts. While this is often attributed to van der Waals (vdW) bonding of 2D materials, nanoscale and quantum confinement effects can also act to modify the atomic interactions of a 2D material, producing unique interfacial properties. Here, we demonstrate the low-friction behavior of magnetene, a non-vdW 2D material obtained via the exfoliation of magnetite, showing statistically similar friction to benchmark vdW 2D materials. We find that this low friction is due to 2D confinement effects of minimized potential energy surface corrugation, lowered valence states reducing surface adsorbates, and forbidden low-damping phonon modes, all of which contribute to producing a low-friction 2D material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8597991 | PMC |
http://dx.doi.org/10.1126/sciadv.abk2041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!