Bacterial growth and proliferation can be restricted by limiting the availability of metal ions in their environment. Humans sequester iron, manganese, and zinc to help prevent infection by pathogens, a system termed nutritional immunity. Commercially used chelants have high binding affinities with a variety of metal ions, which may lead to antibacterial properties that mimic these innate immune processes. However, the modes of action of many of these chelating agents in bacterial growth inhibition and their selectivity in metal deprivation remain ill-defined. We address this shortcoming by examining the effect of 11 chelators on Escherichia coli growth and their impact on the cellular concentration of five metals. The following four distinct effects were uncovered: (i) no apparent alteration in metal composition, (ii) depletion of manganese alongside reductions in iron and zinc levels, (iii) reduced zinc levels with a modest reduction in manganese, and (iv) reduced iron levels coupled with elevated manganese. These effects do not correlate with the absolute known chelant metal ion affinities in solution; however, for at least five chelators for which key data are available, they can be explained by differences in the relative affinity of chelants for each metal ion. The results reveal significant insights into the mechanism of growth inhibition by chelants, highlighting their potential as antibacterials and as tools to probe how bacteria tolerate selective metal deprivation. Chelating agents are widely used in industry and consumer goods to control metal availability, with bacterial growth restriction as a secondary benefit for preservation. However, the antibacterial mechanism of action of chelants is largely unknown, particularly with respect to the impact on cellular metal concentrations. The work presented here uncovers distinct metal starvation effects imposed by different chelants on the model Gram-negative bacterium Escherichia coli. The chelators were studied both individually and in pairs, with the majority producing synergistic effects in combinations that maximize antibacterial hostility. The judicious selection of chelants based on contrasting cellular effects should enable reductions in the quantities of chelant required in numerous commercial products and presents opportunities to replace problematic chemistries with biodegradable alternatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788741 | PMC |
http://dx.doi.org/10.1128/AEM.01641-21 | DOI Listing |
J Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Drug Sciences, University of Pavia, Pavia, 27100, Italy.
Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.
Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).
World J Clin Cases
January 2025
Department of Radiology, Hospital de Especialidades Eugenio Espejo, Quito 170136, Pichincha, Ecuador.
Background: Wilson's disease (WD) is a rare metabolic disorder of copper accumulation in organs such as liver, brain, and cornea. Diagnoses and treatments are challenging in settings, where advanced diagnostic tests are unavailable, copper chelating agents are frequently scarce, healthcare professionals lack disease awareness, and medical follow-ups are limited. Prompt diagnoses and treatments help prevent complications, improve patients' quality of life, and ensure a normal life expectancy.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!