Polymer-carbon nanocomposite sensor is a promising molecular sensing device for electronic nose (e-nose) due to its printability, variety of polymer materials, and low operation temperature; however, the lack of stability in an air environment has been an inevitable issue. Here, we demonstrate a design concept for realizing long-term stability in a polyethylene glycol (PEG)-carbon black (CB) nanocomposite sensor by understanding the underlying phenomena that cause sensor degradation. Comparison of the sensing properties and infrared spectroscopy on the same device revealed that the oxidation-induced consumption of PEG is a crucial factor for the sensor degradation. According to the mechanism, we introduced an antioxidizing agent (i.e., ascorbic acid) into the PEG-CB nanocomposite sensor to suppress the PEG oxidation and successfully demonstrated the long-term stability of sensing properties under an air environment for 30 days, which had been difficult in conventional polymer-carbon nanocomposite sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.1c01875DOI Listing

Publication Analysis

Top Keywords

nanocomposite sensor
16
long-term stability
12
stability polyethylene
8
black nanocomposite
8
polymer-carbon nanocomposite
8
air environment
8
sensor degradation
8
sensing properties
8
sensor
6
nanocomposite
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!