The detection of harmful trace gases, such as formaldehyde (HCHO), is a technical challenge in the current gas sensor field. The weak electrical signal caused by trace amounts of gases is difficult to be detected and susceptible to other gases. Based on the amplification effect of a field-effect transistor (FET), a carbon-based FET-type gas sensor with a gas-sensing gate is proposed for HCHO detection at the ppb level. Semiconducting carbon nanotubes (s-CNTs) and a catalytic metal are chosen as channel and gate materials, respectively, for the FET-type gas sensor, which makes full use of the respective advantages of the channel transport layer and the sensitive gate layer. The as-prepared carbon-based FET-type gas sensor exhibits a low detection limit toward HCHO up to 20 ppb under room temperature (RT), which can be improved to 10 ppb by a further heating strategy. It also exhibits a remarkable elevated recovery rate from 80 to 97% with almost no baseline drift (2%) compared to the RT condition, revealing excellent reproducibility, stability, and recovery. The role of sensitive function in the FET-type gas sensor is performed by means of an independent gas-sensing gate, that is, the independence of the sensitive gate and the electron transmission channel is the main reason for its high sensitivity detection. We hope our work can provide an instructive approach for designing high-performance formaldehyde sensor chips with on-chip integration potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c17044 | DOI Listing |
Nanomaterials (Basel)
December 2024
Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.
BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute for Physical and Information Technologies (ITEFI-CSIC), 28006 Madrid, Spain.
Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
NT-MDT BV, 7335 Apeldoorn, The Netherlands.
Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic.
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!