Aims: Plastic debris are constantly released into oceans where, due to weathering processes, they suffer fragmentation into micro- and nanoplastics. Diverse microbes often colonize these persisting fragments, contributing to their degradation. However, there are scarce reports regarding the biofilm formation of eukaryotic decomposing microorganisms on plastics. Here, we evaluated five yeast isolates from deep-sea sediment for catabolic properties and early adhesion ability on high-density polyethylene (HDPE).

Methods And Results: We assessed yeast catabolic features and adhesion ability on HDPE fragments subjected to abiotic weathering. Adhered cells were evaluated through Crystal Violet Assay, Scanning Electron Microscopy, Atomic Force Microscopy and Infrared Spectroscopy. Isolates were identified as Candida parapsilosis and exhibited wide catabolic capacity. Two isolates showed high adhesion ability on HDPE, consistently higher than the reference C. parapsilosis strain, despite an increase in fragment roughness due to weathering. Isolate Y5 displayed the most efficient colonization, with production of polysaccharides and lipids after 48 h of incubation.

Conclusion: This work provides insights on catabolic metabolism and initial yeast-HDPE interactions of marine C. parapsilosis strains.

Significance And Impact Of The Study: Our findings represent an essential contribution to the characterization of early interactions between deep-sea undescribed yeast strains and plastic pollutants found in oceans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.15369DOI Listing

Publication Analysis

Top Keywords

adhesion ability
12
early adhesion
8
candida parapsilosis
8
high-density polyethylene
8
ability hdpe
8
biochemical features
4
features early
4
adhesion
4
adhesion marine
4
marine candida
4

Similar Publications

Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.

View Article and Find Full Text PDF

Purpose: This study assessed the microgap width and adhesion of three bacterial species in four dental implants with different interlocks under four screwing torques.

Materials And Methods: Ten samples of four implant systems with various interlockings, including full-hexagonal (FHI), cylindrical-conical trilobe-index (TLI), Morse-taper with octagon terminal index (OI), and hexagonal interlock (slip-fit) (HI-SF), were used. The abutments were screwed to the fixtures under torques of 10, 20, 30, and 40 Ncm.

View Article and Find Full Text PDF

Alveolar ridge loss presents difficulties for implant placement and stability. To address this, alveolar ridge preservation (ARP) is required to maintain bone and avoid the need for ridge augmentation using socket grafting. In this study, a scaffold for ARP was created by fabricating a 3D porous dense microfiber silk fibroin (mSF) embedded in poly(vinyl alcohol) (PVA), which mimics the osteoid template.

View Article and Find Full Text PDF

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!