Cyr61 Alleviates Cholangitis by Inhibiting Cytotoxic Effects of CD8 T Cells on Biliary Epithelial Cells.

Curr Med Sci

Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, Nantong, 226006, China.

Published: December 2021

AI Article Synopsis

Article Abstract

Objective: Primary biliary cholangitis (PBC) is a chronic progressive cholestatic liver disease. In recent years, researchers have found that cysteine-rich angiogenic inducer 61 (Cyr61, also known as CCN1) has a potential role in reducing portal inflammation in patients with PBC. This study aimed to explore the relationship between Cyr61 and PBC to provide new ideas and an experimental basis for the clinical treatment of PBC.

Methods: After induction of the overexpression of Cyr61 in a mouse model of PBC using recombinant adenovirus, hematoxylin and eosin staining and pathological scores were used to indicate intrahepatic inflammation and bile duct damage. Real-time PCR was used to detect changes in inflammation-related cytokines in the liver. To further study the mechanism, we assessed whether Cyr61 protects bile duct epithelial cells from cytotoxic effects.

Results: Serum and hepatic Cyr61 levels were increased in the murine model of PBC. Overexpression of Cyr61 alleviated hepatic inflammation and bile duct injury in vivo. Cyr61 inhibited the cytotoxic effects of CD8 T cells by acting on biliary epithelial cells (BECs) in vitro.

Conclusion: Our results provide novel insight into the pathogenesis of PBC and suggest that Cyr61 plays a dominant role in the cytotoxic effects on BECs in PBC. Consequently, therapeutic strategies targeting Cyr61 could be a potent therapy for PBC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-021-2458-3DOI Listing

Publication Analysis

Top Keywords

cytotoxic effects
12
epithelial cells
12
bile duct
12
cyr61
10
effects cd8
8
cd8 cells
8
biliary epithelial
8
pbc
8
overexpression cyr61
8
model pbc
8

Similar Publications

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.

Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.

View Article and Find Full Text PDF

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!