Assessment of heavy metal pollution and ecological risk in river water and sediments in a historically metal mined watershed, Northeast Japan.

Environ Monit Assess

Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.

Published: November 2021

Mining legacies continue to impact the geochemical cycles in historically mined watersheds after mine closure. The Hokuroku District in Northeast Japan is a famous metal mining area with a long mining history; however, studies on the distribution mechanisms and pollution characteristics of heavy metals in these historically mined watersheds after the boom period of mining activities are lacking. This study aims to provide fundamental insights into the effects of the mining activities and hydrological conditions on heavy metal pollution in the Kosaka watershed, Hokuroku District. Sampling was performed in terms of watershed segmentation, and the outlet of the tributary within each sub-watershed was also sampled to capture the diffusional pollution status. The distributions of Zn, Cu, Cd, Pb and As in river water and sediments, as well as their pollution characteristics and ecological risks, were analysed under different hydrological conditions. Our findings provide evidence of the ecological risk in surface water induced by Zn, Cu and Pb pollution in the Kosaka River system. In a high proportion of the sub-watershed, there was moderate to strong enrichment in Cd, Cu and Zn in the river sediments. The sub-watersheds with high pollution levels and ecological risk were highly consistent with the sub-watersheds encompassing abandoned mine sites. Suspended particles carried large amounts of Pb and Cu, especially on rainy days. The heavy metal contents in river water were very sensitive to occasional rainfall events; rainy days posed the most risk to organisms in the Kosaka River, followed by the low-water-level season and the high-water-level season.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09601-1DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
ecological risk
12
river water
12
metal pollution
8
water sediments
8
northeast japan
8
historically mined
8
mined watersheds
8
hokuroku district
8
pollution characteristics
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!