Computational Study of the Structure and Transport in Pyrrolidinium-Li-TFSI-Silica Ionogels.

J Phys Chem B

Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, United States.

Published: December 2021

Ionogels (IGs) are a unique class of composite materials with attributes that make them promising materials for applications in electrochemical energy storage. Due to the solid porous matrix that confines the ionic liquid (IL) in the IG, they can be used as self-supporting electrolytes. Furthermore, interactions of the IL with the porous matrix can have beneficial effects on transport, such as lowering the freezing/glass transition temperature of the conducting IL. In this work, we employ molecular dynamics simulations to investigate the influence of the porous morphology and solid volume fraction on ionic conductivity and Li diffusivity using a representative 0.5 M Li-(trifluoromethane)sulfonimide (TFSI)-pyrrolidinium (Pyr1.3) IL confined in a nanoporous silica matrix. The effect of the morphology of the confining matrix is compared using the pure IL as a baseline. We find that the tracer and collective Li diffusion and ionic conductivity of all the model IGs have significantly lower temperature dependence than the corresponding pure IL. In general, low-silica IGs with wide pores displayed the best transport properties at high temperatures, but the trends with the morphology for the nested set of transport coefficients we examined changed as the collective behavior of the Li ions and the molecular IL components were considered. Remarkably, some of the model IGs displayed better transport properties on a volume of fluid basis at low temperatures than the constituent IL. These trends were tied to structural changes revealed by the radial distribution functions of the IL components and the silica surface, including a decreasing Li adsorption peak of the surface silica indicating a change in the relative contributions of bulk-like and surface-like transport in the confined IL.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c07439DOI Listing

Publication Analysis

Top Keywords

porous matrix
8
ionic conductivity
8
model igs
8
transport properties
8
transport
6
computational study
4
study structure
4
structure transport
4
transport pyrrolidinium-li-tfsi-silica
4
pyrrolidinium-li-tfsi-silica ionogels
4

Similar Publications

Fiber Sorbents - A Versatile Platform for Sorption-Based Gas Separations.

Acc Mater Res

January 2025

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.

Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.

View Article and Find Full Text PDF

Highly efficient removal of per- and polyfluoroalkyl substances by extrusion-regenerated aminated polyurethane sponges.

Water Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.

View Article and Find Full Text PDF

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

This study investigates the use of nano-sized oxygen bubbles (NOBs) to enhance BTEX (benzene, toluene, ethylbenzene, xylene) biodegradation in groundwater. Optimized NOBs, averaging 155 nm and at a concentration of 6.59 × 10⁸ bubbles/mL, were found to provide sustained oxygen release with a half-life of approximately 50 days.

View Article and Find Full Text PDF

The glomerular filtration barrier (GFB) has a unique spatial structure, including porous capillary endothelial cells, glomerular basal membrane (GBM) and highly specialized podocytes. This special structure is essential for the hemofiltration process of nephrons. GBM is the central meshwork structure of GFB formed by the assembly and fusion of various extracellular matrix (ECM) macromolecules, such as laminins and collagens, which undergo isoform transformation and maturation that may require precise regulation by metalloproteinases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!