Carbon dot (CD) based long-lived afterglow emission materials have attracted attention in recent years, but demonstration of white-light room-temperature afterglow remains challenging, due to the difficulty of simultaneous generation of multiple long-lived excited states with distinct chromatic emission. In this work, a white-light room-temperature long-lived afterglow emission from a CD powder with a high efficiency of 5.8% and Commission International de l'Eclairage (CIE) coordinates of (0.396, 0.409) is realized. The afterglow of the CDs originates from a synergy between the phosphorescence of the carbon core and the delayed fluorescence associated with the surface CN moieties, which is accomplished by matching the singlet state of the surface groups of the CDs with the long-lived triplet state of the carbon core, resulting in an efficient energy transfer. It is demonstrated how the long-lived afterglow emission of CDs can be utilized for fabrication of white light emitting devices and in anticounterfeiting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105415DOI Listing

Publication Analysis

Top Keywords

long-lived afterglow
12
afterglow emission
12
white light
8
delayed fluorescence
8
white-light room-temperature
8
carbon core
8
afterglow
6
long-lived
5
light afterglow
4
carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!