CD47- and Integrin α4/β1-Comodified-Macrophage-Membrane-Coated Nanoparticles Enable Delivery of Colchicine to Atherosclerotic Plaque.

Adv Healthc Mater

Department of Cardiology, Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease, Medical School of Nanjing University, Nanjing, 211800, China.

Published: February 2022

Atherosclerosis is a chronic inflammatory disease and the major pathological factor of most cardiovascular diseases, leading to ≈1/3 of deaths worldwide. Improving local delivery of anti-inflammatory drugs to the site of atherosclerosis has significant promise to prevent the development of atherosclerotic plaque clinically. Here, a modified-macrophage-membrane-coated nanoparticle drug delivery able to transport colchicine to the atherosclerotic site is reported. This hybrid system efficiently targets endothelial cells under an inflammatory environment while escaping the endocytosis of macrophages. Furthermore, the anti-inflammatory effect of the modified-macrophage-membrane-coated nanoparticles on foam cells is studied. In vivo, the migration of the modified-macrophage-membrane-coated nanoparticles to atherosclerotic lesions is confirmed in a vulnerable atherosclerotic plaque mouse model. Intravenous injections of the hybrid system successfully reduce the lipid plaque load and improve the plaque stability. This strategy provides a potential therapeutic system for the targeted delivery of anti-inflammatory drugs to the atherosclerotic site for the treatment of atherosclerosis in cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202101788DOI Listing

Publication Analysis

Top Keywords

atherosclerotic plaque
12
colchicine atherosclerotic
8
cardiovascular diseases
8
delivery anti-inflammatory
8
anti-inflammatory drugs
8
atherosclerotic site
8
hybrid system
8
modified-macrophage-membrane-coated nanoparticles
8
atherosclerotic
6
plaque
5

Similar Publications

IgE and cardiac disease.

Acta Physiol (Oxf)

February 2025

Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, West Virginia, USA.

IgE acts primarily via the high affinity IgE receptor (FcεRI) and is central to immediate hypersensitivity reactions (anaphylaxis). However, IgE is also important in the development of chronic hypersensitivity reactions (allergy). In the cardiovascular system, numerous clinical studies have investigated serum IgE levels, mainly in the context of myocardial infarction, and have established a clear association between IgE and ischemic cardiac events.

View Article and Find Full Text PDF

Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).

View Article and Find Full Text PDF

Atherosclerosis is the leading cause of cardiovascular disease and myocardial infarction. Precise and effective plaque targeting is a major objective for therapeutic outcomes throughout various stages of atherosclerosis. Inspired by the natural recruitment of neutrophils in atherosclerotic plaques, we fabricated a simvastatin (ST)-loaded and neutrophil membrane-cloaked nanoplatform (NNP) for enhancing localized payload delivery and atherosclerosis management.

View Article and Find Full Text PDF

Atherosclerotic disease is a major cause of acute cardiovascular events. A deeper understanding of its underlying mechanisms will allow advancing personalized and patient-centered healthcare. Transcriptomic research has proven to be a powerful tool for unravelling the complex molecular pathways that drive atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!