Aims: Immunohistochemical programmed death-ligand 1 (PD-L1) staining to predict responsiveness to immunotherapy in patients with advanced non-small cell lung cancer (NSCLC) has several drawbacks: a robust gold standard is lacking, and there is substantial interobserver and intraobserver variance, with up to 20% discordance around cutoff points. The aim of this study was to develop a new deep learning-based PD-L1 tumour proportion score (TPS) algorithm, trained and validated on a routine diagnostic dataset of digitised PD-L1 (22C3, laboratory-developed test)-stained samples.

Methods And Results: We designed a fully supervised deep learning algorithm for whole-slide PD-L1 assessment, consisting of four sequential convolutional neural networks (CNNs), using aiforia create software. We included 199 whole slide images (WSIs) of 'routine diagnostic' histology samples from stage IV NSCLC patients, and trained the algorithm by using a training set of 60 representative cases. We validated the algorithm by comparing the algorithm TPS with the reference score in a held-out validation set. The algorithm had similar concordance with the reference score (79%) as the pathologists had with one another (75%). The intraclass coefficient was 0.96 and Cohen's κ coefficient was 0.69 for the algorithm. Around the 1% and 50% cutoff points, concordance was also similar between pathologists and the algorithm.

Conclusions: We designed a new, deep learning-based PD-L1 TPS algorithm that is similarly able to assess PD-L1 expression in daily routine diagnostic cases as pathologists. Successful validation on routine diagnostic WSIs and detailed visual feedback show that this algorithm meets the requirements for functioning as a 'scoring assistant'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299490PMC
http://dx.doi.org/10.1111/his.14571DOI Listing

Publication Analysis

Top Keywords

routine diagnostic
12
algorithm
10
supervised deep
8
deep learning
8
learning algorithm
8
programmed death-ligand
8
tumour proportion
8
proportion score
8
non-small cell
8
cell lung
8

Similar Publications

Rationale: Gastric antral vascular ectasia (GAVE) is a rare acquired lesion characterized by vascular dilation in the gastric antrum, frequently results in occult or overt gastrointestinal bleeding. Endoscopic intervention remains the cornerstone of therapy. Argon plasma coagulation was previously considered a first treatment option.

View Article and Find Full Text PDF

The aim of this study was to evaluate the clinical benefits and outcomes of adjuvant radiation therapy on adrenocortical carcinoma (ACC) patients. All patients with ACC that were reported between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results database. A forward-stepwise Cox proportional hazards regression was used to identify independent risk factors.

View Article and Find Full Text PDF

Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!