In the cell, the thermodynamic stability of a protein - and hence its biological activity - can change dramatically as a result of perturbations in its amino acid sequence and the concentration of stabilizing ligands. This interplay is particularly evident in zinc-binding transcription factors such as the p53 tumor suppressor, whose DNA-binding activity can critically depend on levels of intracellular zinc as well as point mutations that alter either metal binding or folding stability. Separate protocols exist for determining a protein's metal affinity and its folding free energy. These properties, however, are intimately connected, and a technique is needed to integrate these measurements. Our protocols employ common non-fluorescent and fluorescent zinc chelators to control and report on free Zn concentration, respectively, combined with biophysical assays of full-length human p53 and its DNA-binding domain. Fitting the data to equations that contain stability and metal-binding terms results in a more complete picture of how metal-dependent proteins can lose and gain DNA-binding function in a range of physiological conditions. Graphic abstract: Figure 1.Raising intracellular zinc can restore tumor-suppressing function to p53 that has been unfolded by missense mutation or cellular conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558834PMC
http://dx.doi.org/10.21769/BioProtoc.4188DOI Listing

Publication Analysis

Top Keywords

p53 dna-binding
8
intracellular zinc
8
urea denaturation
4
zinc
4
denaturation zinc
4
zinc binding
4
binding dna
4
dna binding
4
binding assays
4
assays mutant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!