Objective: This study is aimed at exploring the underlying molecular mechanisms of ST-segment elevation myocardial infarction (STEMI) and provides potential clinical prognostic biomarkers for STEMI.
Methods: The GSE60993 dataset was downloaded from the GEO database, and the differentially expressed genes (DEGs) between STEMI and control groups were screened. Enrichment analysis of the DEGs was subsequently performed using the DAVID database. A protein-protein interaction network was constructed, and hub genes were identified. The hub genes in patients were then validated by quantitative reverse transcription-PCR. Furthermore, hub gene-miRNA interactions were evaluated using the miRTarBase database. Finally, patient data on classical cardiovascular risk factors were collected, and plasma microRNA-146a (miR-146a) levels were detected. An individualized nomogram was constructed based on multivariate Cox regression analysis.
Results: A total of 239 DEGs were identified between the STEMI and control groups. Expression of S100A12 and miR-146a was significantly upregulated in STEMI samples compared with controls. STEMI patients with high levels of miR-146a had a higher risk of major adverse cardiovascular events (MACEs) than those with low levels of miR-146a (log-rank = 0.034). Multivariate Cox regression analysis identified five statistically significant variables, including age, hypertension, diabetes mellitus, white blood cells, and miR-146a. A nomogram was constructed to estimate the likelihood of a MACE at one, two, and three years after STEMI.
Conclusion: The incidence of MACEs in STEMI patients expressing high levels of miR-146a was significantly greater than in those expressing low levels. MicroRNA-146a can serve as a biomarker for adverse prognosis of STEMI and might function in its pathogenesis by targeting S100A12, which may exert its role via an inflammatory response. In addition, our study presents a valid and practical model to assess the probability of MACEs within three years of STEMI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8561321 | PMC |
http://dx.doi.org/10.1155/2021/2923441 | DOI Listing |
BMC Cancer
January 2025
Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
Background: Head and neck squamous cell carcinoma (HNSCC), a highly invasive malignancy with a poor prognosis, is one of the most common cancers globally. Circular RNAs (circRNAs) have become key regulators of human malignancies, but further studies are necessary to fully understand their functions and possible causes in HNSCC.
Methods: CircCCT2 expression levels in HNSCC tissues and cells were measured via qPCR.
Int J Mol Sci
December 2024
Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warszawa, Poland.
High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) is a rare germi-nal centre lymphoma characterised by a typical gain/loss pattern on chromo-some 11q but without MYC translocation. It shares some features with Burkitt lymphoma (BL), HGBCLs and germinal centre-derived diffuse large B-cell lym-phoma, not otherwise specified (GCB-DLBCL-NOS). Since microRNA expression in HGBCL-11q remains unknown, we aimed to identify and compare the mi-croRNA expression profiles in HGBCL-11q, BL and in GCB-DLBCL-NOS.
View Article and Find Full Text PDFBiomedicines
November 2024
Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
Background: Dengue virus (DENV) is the most widespread mosquito-borne virus, which can cause dengue fever with mild symptoms, or progress to fatal dengue hemorrhagic fever and dengue shock syndrome. As the main target cells of DENV, macrophages are responsible for the innate immune response against the virus.
Methods: In this study, we investigated the role of pyroptosis in the pathogenic mechanism of dengue fever by examining the level of pyroptosis in DENV-1-infected macrophages and further screened differentially expressed microRNAs by high-throughput sequencing to predict microRNAs that could affect the pyroptosis of the macrophage.
Sci Rep
January 2025
Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji, Kawaramachi, Kamigyoku, Kyoto, 602-0841, Japan.
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe mucocutaneous disorders characterized by extensive tissue necrosis; they are often accompanied by severe ocular complications (SOC). The regulatory role of microRNAs (miRNAs) in modulating immune responses in SJS/TEN is not fully understood, particularly in relation to chronic SOC. We explored the expression profiles of specific miRNAs and their potential impact on the regulation of key innate immune genes in patients with SJS/TEN with SOC.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
Vitiligo is a common long-term depigmenting skin disorder that is characterized by patches of skin losing their pigment. To evaluate serum/tissue levels of miR-16, 146a, 19b and 720 in vitiligo patients and healthy controls, also analyzing the correlations between all biomarkers to indicate whether those can be used to early diagnose vitiligo patients. Forty-subjects were included, divided into two equal groups, 20 healthy matched individuals and 20 vitiligo patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!