The fracture of rocks surrounding the floor roadway during the mining of the working face of a coal mine is a complicated spatiotemporal process due to the superimposed action of multiple stress fields on the surrounding rock mass. Using the surrounding rock of a floor roadway in the working face of the Huainan Pan'er Mine as the research subject, we conducted real-time monitoring using geoelectric field monitoring technology, and found the spatiotemporal response law of the geoelectric field in the process of regional rupture and damage of engineering rock masses under a complex stress field environment. The results show that (1) the time series response characteristics and spatial distribution of the geoelectric field signal are closely related to the stress distribution and damage evolution of the surrounding rock mass; (2) the rupture and damage degree of the goaf floor significantly increased when the working face was pushed through the monitoring area for 20-40 m. During this process, the excitation current dropped by 4-12 mA, and the self-potential pulse fluctuation amplitude was greater than 400 mV; (3) from the beginning of the monitoring process to the end of the monitoring, the self-potential in the damaged area decreased by 250 mV, and the self-potential in the mudstone layer below the damaged area increased by 140 mV. The electrons released into the environment around the damaged rock mass during the severe impact phase of mining did not flow back to the damaged area, and the positive charge in the damaged rock mass gradually accumulated in the complete rock mass in units of rock strata; (4) when superimposed and supported by anchor rod and cables, the bearing capacity of the shallow bearing circle of the roadway was enhanced, and the excitation current presented a step-like overall increase during mining of the working face with a small drop after every significant increase. This result is of significance in monitoring the evolutionary process of real-time failure of rock masses under complex stress environments using geoelectric field information and in improving the quality of geoelectric field monitoring technology testing applications in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8595735PMC
http://dx.doi.org/10.1038/s41598-021-01823-0DOI Listing

Publication Analysis

Top Keywords

geoelectric field
24
rock mass
20
surrounding rock
16
working face
16
floor roadway
12
damaged area
12
rock
10
response characteristics
8
mining working
8
field monitoring
8

Similar Publications

The combined application of direct current (DC) resistivity and induced polarization (IP) methods, referred to as combined DCIP method, has gained popularity for characterizing the critical zone dynamic processes such as dense non-aqueous phase liquids (DNAPLs) spreading at contaminated sites. Large-scale DCIP surveys typically require considerable durations, necessitating optimized survey designs to enhance survey resolution while controlling time and labor costs. However, to date, approaches to optimize geoelectrical survey design have focused solely on DC applications, and the efficiency of optimized survey designs for combined DCIP is yet to be investigated.

View Article and Find Full Text PDF

We present a study on the dynamical variations of geoelectric fields E during the intense geomagnetic storm of April 23-24, 2023. The storm is caused by the interplanetary counterpart of a coronal mass ejection erupted from the Sun in association with an M1.7 X-ray flare.

View Article and Find Full Text PDF

This research provides a comprehensive examination of flood risk mitigation in Saudi Arabia, with a focus on Wadi Al-Laith. It highlights the critical importance of addressing flood risks in arid regions, given their profound impact on communities, infrastructure, and the economy. Analysis of morphometric parameters ((drainage density (Dd), stream frequency (Fs), drainage intensity (Di), and infiltration number (If)) reveals a complex hydrological landscape, indicating elevated flood risk.

View Article and Find Full Text PDF

This study introduces a rapid and efficient inversion algorithm designed for the interpretation of self-potential responses originating from mineralized and ore sources and hydrothermal activity, specifically addressing spherical, vertical, and horizontal cylindrical structures. The algorithm leverages local wavenumber and correlation imaging techniques to enhance accuracy in modeling. The correlation factor (C value) is crucial in this approach, calculated as the correlation between the local wavenumber of the measured self-potential field and that of the computed field.

View Article and Find Full Text PDF

In order to investigate the seepage law and crack development characteristics of dump slopes, as well as the impact on slope stability during drying and wetting cycles, a simulation test slope system was constructed in a rainfall environment, specifically designed to mimic the engineering conditions of dump slope. The apparent resistivity response formula for the seepage and crack development processes was derived based on the three-phase medium theory of rock-soil bodies and Maxwell's conductivity formula. The geoelectric field characteristics pertaining to slope damage and the corresponding patterns of alteration were comprehensively investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!