The HER3/ERBB3 receptor is an oncogenic receptor tyrosine kinase that forms heterodimers with EGFR family members and is overexpressed in numerous cancers. HER3 overexpression associates with reduced survival and acquired resistance to targeted therapies, making it a potential therapeutic target in multiple cancer types. Here, we report on immunogenic, promiscuous MHC class II-binding HER3 peptides, which can generate HER3-specific CD4 Th1 antitumor immune responses. Using an overlapping peptide screening methodology, we identified nine MHC class II-binding HER3 epitopes that elicited specific Th1 immune response in both healthy donors and breast cancer patients. Most of these peptides were not identified by current binding algorithms. Homology assessment of amino acid sequence BLAST showed >90% sequence similarity between human and murine HER3/ERBB3 peptide sequences. HER3 peptide-pulsed dendritic cell vaccination resulted in anti-HER3 CD4 Th1 responses that prevented tumor development, significantly delayed tumor growth in prevention models, and caused regression in multiple therapeutic models of HER3-expressing murine tumors, including mammary carcinoma and melanoma. Tumors were robustly infiltrated with CD4 T cells, suggesting their key role in tumor rejection. Our data demonstrate that class II HER3 promiscuous peptides are effective at inducing HER3-specific CD4 Th1 responses and suggest their applicability in immunotherapies for human HER3-overexpressing tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414303 | PMC |
http://dx.doi.org/10.1158/2326-6066.CIR-21-0454 | DOI Listing |
Cryptococcal-associated immune reconstitution inflammatory syndrome (C-IRIS) is a clinical worsening or new presentation of cryptococcal disease following the initiation of antiretroviral therapy. C-IRIS is primarily driven by an influx of pathological CD4 T cells, which triggers a hyperinflammatory response. The murine model of C-IRIS is a way to study the disease in mice and understand how the immune system triggers life-threatening outcomes in patients.
View Article and Find Full Text PDFBiosystems
January 2025
Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 3er Circuito Exterior s/n, Ciudad Universitaria, 04510, CdMx, Mexico.
Lymphopoiesis is the generation of the T, B and NK cell lineages from a common lymphoid-biased haematopoietic stem cell. The experimental study of this process has generated a large amount of cellular and molecular data. As a result, there is a considerable number of mathematical and computational models regarding different aspects of lymphopoiesis.
View Article and Find Full Text PDFRespir Res
January 2025
Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico.
Background: Post-COVID-19 respiratory sequelae often involve lung damage, which is called residual lung abnormalities, and potentially lead to chronic respiratory issues. The adaptive immune response, involving T-cells and B-cells, plays a critical role in pathogen control, inflammation, and tissue repair. However, the link between immune dysregulation and the development of residual lung abnormalities remains unclear.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of First Clinical Medical, Ningxia Medical University, Yinchuan, 750004, China.
Background: Helicobacter pylori (H. pylori), a specific bacterium capable of surviving in the acidic environment of the stomach, has been recognized as a group of causative agents of gastric cancer. Therefore, the development of mucosal vaccines against H.
View Article and Find Full Text PDFScand J Immunol
January 2025
LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!