Roles of water in improved production of mycelial biomass and lignocellulose-degrading enzymes by water-supply solid-state fermentation of Ganoderma lucidum.

J Biosci Bioeng

Department of Microbiology, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:

Published: February 2022

The liquid phase was proved to be a significant influencing factor among the three phases in solid-state fermentation (SSF), which determined water control was crucial. However, obvious water loss was caused by microbial utilization and moisture evaporation. Super absorbent polymer (SAP) was utilized to supply water in SSF owing to its high water-holding capacity. Adding 0.15% SAP could significantly increase the biomass of Ganoderma lucidum by 33.59% and promote filter paper activity (FPA), endocellulase activity and laccase activity by 27.11%, 29.14% and 47.39%, respectively. Water states of fermentation substrates were detected by the low-field nuclear magnetic resonance (LF-NMR). Results revealed that water present and lost was dominated by the capillary water. At the end of fermentation, the capillary water content (C) in water-supply SSF was 20.48% and 17.20% higher than that in static SSF and cold-model SSF. The relaxation time of the capillary water was reduced by 56.53% in water-supply SSF and by 53.40% in static SSF, but it just reduced by 6.82% in cold-model SSF. In addition, the C in SSF had a high correlation with the biomass and lignocellulose-degrading enzyme activities of G. lucidum. These results clearly demonstrated that capillary water played a very important role in improved production of G. lucidum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2021.10.006DOI Listing

Publication Analysis

Top Keywords

capillary water
16
ssf
9
water
9
improved production
8
biomass lignocellulose-degrading
8
solid-state fermentation
8
ganoderma lucidum
8
ssf high
8
water-supply ssf
8
static ssf
8

Similar Publications

Gold nanoparticles supported onto zwitterionic polymer capillary monoliths meant for efficient enrichment of microcystins in water.

Talanta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou, 350116, Fuzhou University, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou, 350116, China. Electronic address:

The release of microcystin (MCs) in aquatic ecosystems poses a substantial risk to the safety of irrigation and drinking water. In view of the challenges associated with monitoring MCs in water bodies, given their low concentration levels (μg/L to ng/L) and the presence of diverse matrix interferences, there is an urgent need to develop an efficient, cost-effective and selective enrichment technique for MCs prior to its quantification. In this work, a gold nanoparticles (AuNPs)-functionalized zwitterionic polymer monolith was described and further applied for the affinity enrichment of MCs.

View Article and Find Full Text PDF

Analysis of an Unsaturated Seepage Mechanism in Coal Seam Water Injection.

ACS Omega

December 2024

School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.

Article Synopsis
  • The wetting process of coal seam water injection is complex due to its unsaturated flow characteristics and multiscale pore structure, which affect the measurement of liquid permeability.
  • A one-way multiscale dynamic apparent permeability coefficient model has been developed to analyze how factors like pressure, liquid wettability, and pore structure influence this process.
  • The study finds that water injection pressure significantly affects the apparent permeability coefficient, with higher pressures leading to a smaller attenuation coefficient, while surfactants improve permeability by enhancing capillary wetting.
View Article and Find Full Text PDF

Subslab soil gas (SSSG) samples were collected as part of an investigation to evaluate vapor intrusion (VI) into a building. The June 2015 Office of Solid Waste and Emergency Response (OSWER) VI Guide (U.S.

View Article and Find Full Text PDF

Optimal CO intake in metastable water film in mesoporous materials.

Nat Commun

December 2024

Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong, China.

The feasibility of carbon mineralization relies on the carbonation efficiency of CO-reactive minerals, which is largely governed by the water content and state within material mesopores. Yet, the pivotal role of confined water in regulating carbonation efficiency at the nanoscale is not well understood. Here, we show that the maximum CO intake occurs at an optimal relative humidity (RH) when capillary condensation initiates within the hydrophilic mesopores.

View Article and Find Full Text PDF

Prolonged use of antiretroviral agents has been clearly associated with nephrotoxicity, suggesting deterioration of renal function in patients receiving Highly Active Antiretroviral Therapy (HAART). The present study was designed to investigate the therapeutic efficacy of resveratrol (RV) in the treatment toxins-induced renal impairment. Twenty-four adult male Wistar rats weighing 70-90 g were divided into four groups and subjected to the following treatments: Control A (distilled water), B (HAART), C (RV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!