Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We observe the impact of bouncing and floating of water drops on a pool of immiscible volatile oil pools at low Weber numbers. The residence time of the impacting drop ranges from a few milliseconds to a few seconds before it sinks into the lighter oil phase. It is hypothesized that the confined evaporation from the volatile oil pool replenishes the thin film draining and results in prolonged floating and delayed sinking of drops into the oil pool. Water drops are released from a low height to impact on volatile hydrocarbon oil deep pools of various volatilities. The floating dynamics and residence times are captured using high-speed imaging. A theoretical model for the residence time has been developed to evaluate the hypothesis. The drop residence time is found to be directly proportional to the volatility of the oil pool in accordance with the hypothesis. The mathematical model incorporating the coupled confined evaporation and film draining dynamics is found to be in well agreement with the experimentally observed residence time. The bouncing-sinking regime map has been developed based on the experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c02443 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!