Sufficient experimental evidence has suggested that polycyclic aromatic hydrocarbons are the building blocks of carbonaceous nanostructures in combustion and circumstellar envelops of carbon-rich stars, but their fundamental formation mechanisms remain elusive. By exploring the reaction kinetics of phenylacetylene with 1-naphthyl/4-phenanthryl radicals, we provide compelling theoretical and experimental evidence for a novel and self-consistent hydrogen-abstraction phenylacetylene-addition (HAPaA) mechanism. HAPaA operates efficiently at both low and high temperatures, leading to the formation, expansion, and nucleation of peri-condensed aromatic hydrocarbons (PCAHs), which are otherwise difficult to synthesis via traditional hydrogen-abstraction acetylene/vinylacetylene-addition pathways. The HAPaA mechanism can be generalized to other α-alkynyl PCAHs and thus provides an alternative covalent bond bridge for PCAH combination via an acetylene linker. The proposed HAPaA mechanism may contribute toward a comprehensive understanding of soot formation, carbonaceous nanomaterials synthesis, and the origin and evolution of carbon in our galaxy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c08230 | DOI Listing |
J Am Chem Soc
December 2021
Clean Combustion Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Sufficient experimental evidence has suggested that polycyclic aromatic hydrocarbons are the building blocks of carbonaceous nanostructures in combustion and circumstellar envelops of carbon-rich stars, but their fundamental formation mechanisms remain elusive. By exploring the reaction kinetics of phenylacetylene with 1-naphthyl/4-phenanthryl radicals, we provide compelling theoretical and experimental evidence for a novel and self-consistent hydrogen-abstraction phenylacetylene-addition (HAPaA) mechanism. HAPaA operates efficiently at both low and high temperatures, leading to the formation, expansion, and nucleation of peri-condensed aromatic hydrocarbons (PCAHs), which are otherwise difficult to synthesis via traditional hydrogen-abstraction acetylene/vinylacetylene-addition pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!