In this study, an efficient one-pot procedure for preparing a new series of pyrazolo[3,4-b]pyridine-fused pyrimidines was described. The target hybrids were developed through a three-component reaction of 3-amino-1H-pyrazolo[3,4-b]pyridine, benzaldehydes, and acetophenones (molar ratio 1 : 1 : 1). The best conditions for the previous reaction were 2.5 equivalents of barium hydroxide in DMF at 150 °C for 6 h. New bis(pyrimidines) were synthesized in high yields using a similar one-pot reaction protocol with some modifications. Thus, two equivalents of each of the appropriate acetophenones and 3-aminopyrazolopyridine were reacted with one equivalent of the appropriate bis(aldehydes). The reaction was carried out at 150 °C for 8 h using 4.5 equivalents of barium hydroxide in DMF. Repeating the previous reaction with the appropriate bis(acetyl) derivatives and benzaldehydes resulted in good yields of the target bis(pyrimidines). The in vitro cytotoxic activity of new pyrimidines against the MCF-7, HEPG2, and Caco2 cell lines was evaluated using the reference doxorubicin (IC values of 4.34-6.97 μM). Hybrid 6h had the best activity against Caco2 and MCF-7 cell lines, IC values of 12.62 and 14.50 μM, respectively. The IC values for hybrids 6c, 6e, and 6f against MCF-7 and Caco2 cell lines were 23.99-41.69 and 33.14-43.33 μM, respectively. Furthermore, hybrid 6e displayed IC value of 20.06 μM HEPG2 cell lines, while the hybrids 6c, 6f and 6h exhibited IC values ranging between 26.29-50.51 μM. Furthermore, hybrid 6e had an IC value of 20.06 μM for the HEPG2 cell lines, whereas hybrids 6c, 6f, and 6h had IC values ranging from 26.29 to 50.51 μM.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202100500DOI Listing

Publication Analysis

Top Keywords

cell lines
20
cytotoxic activity
8
previous reaction
8
barium hydroxide
8
hydroxide dmf
8
caco2 cell
8
2006 μm hepg2
8
hepg2 cell
8
lines hybrids
8
values ranging
8

Similar Publications

Introduction/objective: Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of Hypericum perforatum methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

View Article and Find Full Text PDF

Background: Lenvatinib is an oral tyrosine kinase inhibitor that selectively inhib-its receptors involved in tumor angiogenesis and tumor growth. It is an emerging first-line treatment agent for hepatocellular carcinoma (HCC). However, there is no intravenous ad-ministration of Lenvatinib.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Oral Biomimetic Nanotherapeutics for Ulcerative Colitis Targeted Treatment by Repairing Intestinal Epithelial Barrier and Restoring Redox Homeostasis.

ACS Appl Mater Interfaces

January 2025

Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.

The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!