Considering the flexibility, adjustable pore structure, and abundant active sites of metal-organic frameworks (MOFs), rational design and fine control of the MOF-based hetero-nanocrystals is a highly important and challenging subject. In this work, self-assembly of a 3D hollow BiOBr@Bi-MOF microsphere was fabricated through precisely controlled dissociation kinetics of the self-sacrificial template (BiOBr) for the first time, where the residual quantity of BiOBr and the formation of Bi-MOF were carefully regulated by changing the reaction time and the capability of coordination. Meanwhile, the hollow microstructure was formed in BiOBr@Bi-MOF through the Oswald ripening mechanism to separate photogenerated electron-hole pairs and increase the adsorption capacity of Bi-MOF for dyes, which significantly enhanced the photocatalytic degradation efficiency of RhB from 56.4% for BiOBr to 99.4% for the optimal BiOBr@Bi-MOF microsphere. This research broadens the selectivity of semiconductor/MOF hetero-nanocrystals with reasonable design and flexible synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c16612 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!