The use of biodiesel blends with petroleum diesel in vehicular engines demands the evaluation of the possible impacts and effects of the gases emitted from their combustion on the environment. Among studies on these questions, biomonitoring using lichens is a viable alternative, given their interactions with the elements dispersed in the atmosphere, as well as its sensitivity and capacity to retain contaminants. In this study, we analyzed the effects of gas emissions from the combustion of biodiesel mixture with petroleum diesel on Cladonia verticillaris thalli. Samples of the lichen (10 g) were exposed to the gases emitted by the exhaust of the generator engine during the combustion process of biodiesel mixtures to petroleum diesel (7% (B7), 10% (B10), 40% (B40), 50% (B50), and 70% (B70)). At 90 days after exposure, samples were analyzed for n-alkane profiles, thallus morphology, photosynthetic pigment contents, and secondary lichen metabolites (protocetraric and fumarprotocetraric acids). Sets B7 and B10 showed better resistance of the lichen to pollutants. Set B40 showed a high stress evidenced by the chain elongation of n-alkanes structure and high chlorophyll production, presenting high morphological damages when compared to the control sets, B7 and B10. The results showed significant reductions of n-alkanes profiles for mixtures with high concentrations of biodiesel (B50 and B70), as well as decreases in the chlorophyll content. These groups showed an increase in the synthesis of secondary metabolites, corroborating the hypothesis that high concentrations of biodiesel in the mixture with petroleum diesel have greater impacts on the lichen. Schematic model for demonstration of using the lichen Cladonia verticillaris as biomonitor of effects from gas emissions from the combustion of biodiesel blends with petroleum diesel by a stationary engine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09610-0DOI Listing

Publication Analysis

Top Keywords

petroleum diesel
20
cladonia verticillaris
12
combustion biodiesel
12
biodiesel blends
12
blends petroleum
8
gases emitted
8
effects gas
8
gas emissions
8
emissions combustion
8
biodiesel mixture
8

Similar Publications

The bioremediation method is considered an economical and environmentally friendly strategy for the remediation of oil-contaminated soils. However, some oil field areas have extreme environmental conditions that make it difficult to establish microbes for bioreme-diation. In this study, bacteria were isolated from oil-contaminated soils of the Dehloran oil fields, which have very harsh soil and weather conditions.

View Article and Find Full Text PDF

Plastics are basically long-chain hydrocarbon compound synthesizes from nonrenewable liquid petroleum products. Since plastics have special and variety of features such as easy availability and handling, light weight, energy efficiency, nondegradable nature, cheap, faster production, and design flexibility, it has gained wide popularity in short time period and has become indispensable part of day-to-day life. The increasing usage and production of plastic with exponential rate have resulted in increasing plastic waste disposal problems which may cause adverse effect on environment and human health.

View Article and Find Full Text PDF

Lebanon, plagued by political and economic crises, experienced a government collapse in early 2020, leading to an electrical nationwide blackout by 2023. Diesel generators were used to compensate for the absence of power production from the national provider, Electricité du Liban (EDL). To investigate the effect of the crisis on the levels of 16 EPA particle bound polycyclic aromatic hydrocarbons (PPAHs), an annual comparative analysis of three locations within Beirut started in 2022 and ended in 2023.

View Article and Find Full Text PDF

Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.

View Article and Find Full Text PDF

Source attribution, health risk analysis, and policy implications of PAHs and NPAHs in PM[Formula: see text] in Northern Mexico.

Sci Rep

December 2024

Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, Apodaca, N.L., C.P. 66628, Mexico.

This research investigates the concentrations, sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in particulate matter with an aerodynamic diameter of 10 μm or less (PM[Formula: see text]) from critical urban centers in northern Mexico: Metropolitan Monterrey Area (MMA), Chihuahua (CHI), and Ciudad Juárez (CDJ). Advanced gas chromatography-mass spectrometry (GC-MS and GC-NCI-MS) revealed significant PAHs concentrations, with levels in MMA reaching 108.89 ± 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!