Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8631799 | PMC |
http://dx.doi.org/10.7554/eLife.71662 | DOI Listing |
Int J Immunogenet
January 2025
Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India.
High degree of variability in human leukocyte antigens (HLAs) system restricts availability of histocompatible HLA-matched-related donors, thus increasing reliance on worldwide bone marrow registries network. Nevertheless, due to limited coverage/accessibility/affordability of some ethnicities in these registries, haploidentical haematopoietic stem cell transplantation (HSCT) emerged as an alternative option, though with allorecognition-mediated graft versus host disease (GvHD) (>40% cases). A dimorphism [-21 methionine (M) or threonine (T)] in HLA-B leader peptide (exon 1) which differentially influences its HLA-E binding, plausibly regulates natural killer cell functionality, affecting GvHD vulnerability and clinically in practice for donor selection.
View Article and Find Full Text PDFHLA
January 2025
School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina.
The novel HLA-C*06:44:02 allele differs from HLA-C*06:44:01 by one synonymous nucleotide substitution in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
HLA-C*03:657 differs from HLA-C*03:04:01:02 by one nucleotide substitution in codon 82 in exon 2.
View Article and Find Full Text PDFHLA
January 2025
Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
HLA-A*02:01:01:257 differs from HLA-A*02:01:01:01 by a single nucleotide substitution in intron 7.
View Article and Find Full Text PDFSci Rep
January 2025
The Biology and DNA Section, General Department of Forensic Science and Criminology, Dubai Police General Head Quarters, Dubai, United Arab Emirates.
This study evaluated the effectiveness of the amplicon RX post-PCR clean-up kit in enhancing trace DNA profile recovery from forensic casework samples amplified using the GlobalFiler PCR amplification kit. The impact of post-PCR clean-up on allele recovery and signal intensity was assessed in both trace casework samples and control samples across a range of DNA concentrations. The results showed that the amplicon RX method significantly improved allele recovery compared to the 29-cycle protocol (p = 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!