AI Article Synopsis

  • The study used Monte Carlo simulations to explore Raman signals in tissue phantoms and validated the arctk code for replicating experimental results.
  • The experiment involved using Intralipid as a scattering agent in a quartz tank, with a PTFE layer acting as the Raman signal source to observe variations in signal strength based on optical properties and spatial location.
  • Findings indicated that linear extrapolation of scattering coefficients is inaccurate at lower concentrations, contributing vital insights for future noninvasive cancer screening techniques.

Article Abstract

In this study, Monte Carlo simulations were created to investigate the distribution of Raman signals in tissue phantoms and to validate the arctk code that was used. The aim was to show our code is capable of replicating experimental results in order to use it to advise similar future studies and to predict the outcomes. The experiment performed to benchmark our code used large volume liquid tissue phantoms to simulate the scattering properties of human tissue. The scattering agent used was Intralipid (IL), of various concentrations, filling a small quartz tank. A thin sample of PTFE was made to act as a distinct layer in the tank; this was our Raman signal source. We studied experimentally, and then reproduced simulations, the variation in Raman signal strength in a transmission geometry as a function of the optical properties of the scattering agent and the location of the Raman material in the volume. We have also found that a direct linear extrapolation of scattering coefficients between concentrations of Intralipid is an incorrect assumption at lower concentrations when determining the optical properties. By combining experimental and simulation results, we have calculated different estimates of these scattering coefficients. The results of this study give insight into light propagation and Raman transport in scattering media and show how the location of maximum Raman signal varies as the optical properties change. The success of arctk in reproducing observed experimental signal behaviour will allow us in future to inform the development of noninvasive cancer screening applications (such as breast and prostate cancers) .

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1an01801aDOI Listing

Publication Analysis

Top Keywords

optical properties
16
raman signal
12
tissue phantoms
8
scattering agent
8
scattering coefficients
8
raman
7
scattering
6
properties
5
experimental
4
experimental numerical
4

Similar Publications

Anti-ambipolar transistors (AAT) are considered as a breakthrough technology in the field of electronics and optoelectronics, which is not only widely used in diverse logic circuits, but also crucial for the realization of high-performance photodetectors. The anti-ambipolar characteristics arising from the gate-tunable energy band structure can produce high-performance photodetection at different gate voltages. As a result, this places higher demands on the parametric driving range (ΔVg) and peak-to-valley ratio (PVR) of the AAT.

View Article and Find Full Text PDF

Colorimetric Xylenol Orange: A Long-Buried Aggregation-Induced Emission Dye and Restricted Rotation for Dual-Mode Sensing of pH and Metal Ions.

Anal Chem

January 2025

Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

As the third largest class of dyes in the world, triphenylmethane dyes are widely applied in colorimetric sensing. However, triphenylmethane dyes are commonly nonfluorescent, which limits their sensing applications. It is worthwhile to study the fluorescence off/on control of triphenylmethane dyes and promote the applications of triphenylmethane dyes in sensing technology.

View Article and Find Full Text PDF

Alveolar echinococcosis (AE) is a serious parasitic infectious disease that is highly invasive and destructive to the liver and has a high mortality rate. However, currently, there is no effective targeted imaging and treatment method for the precise detection and therapy of AE. We proposed a new two-step targeting strategy (TSTS) for AE based on poly(lactic--glycolic acid) (PLGA).

View Article and Find Full Text PDF

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!