Background: Three-Dimensional (3D) printing technology can be used to manufacture training platforms for surgeons. Kidney transplantation offers a suitable model, since it mostly entails vascular and ureteric anastomoses.

Methods: A new simulation platform for surgical training in kidney transplantation was realized and validated in this study. A combination of different 3-D printing technology was used to reproduce the key anatomy of lower abdomen, of pelvis, and of a kidney graft, including their mechanical properties.

Results: Thirty transplantations were performed by two junior trainees with no previous experience in the area. Analysis of the times required to perform the simulated transplantation showed that proficiency was reached after about ten cases, as indicated by a flattening of the respective curves that corresponded to a shortening of about 40% and 47%, respectively, of the total time initially needed to perform the whole simulated transplantation. Although an objective assessment of the technical quality of the anastomoses failed to show a significant improvement throughout the study, a growth in self-confidence with the procedure was reported by both trainees.

Conclusion: The quality of the presented simulation platform aimed at reproducing in the highest possible way a realistic model of the operative setting and proved effective in providing an integrated training environment where technical skills are enhanced together with a team-training experience. As a result the trainees' self-confidence with the procedure resulted enforced. Three-D--printed models can also offer pre-operative patient-specific training when anatomical variants are anticipated by medical imaging. An analysis of the costs related to the use of this platform is also provided and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00464-021-08788-1DOI Listing

Publication Analysis

Top Keywords

kidney transplantation
12
printing technology
8
simulation platform
8
perform simulated
8
simulated transplantation
8
self-confidence procedure
8
transplantation
5
three-d-printed simulator
4
kidney
4
simulator kidney
4

Similar Publications

Introduction: Kidney transplantation is the preferred treatment for end-stage kidney disease (ESKD), enhancing survival and quality of life. However, kidney transplant recipients (KTRs) are at high risk for bone disorders, particularly low bone turnover disease, which increases fracture risk. Teriparatide, an anabolic agent, may provide a beneficial treatment option for these patients.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Background: Prior studies indicate that 1% to 4% of Epstein-Barr virus (EBV)-seronegative recipients of EBV-seropositive donor (EBV D+/R-) kidneys develop posttransplant lymphoproliferative disorder (PTLD). However, these estimates are based on limited data that lack granularity.

Objective: To determine the associations between pretransplant EBV D+/R- and recipient EBV-seropositive status (R+) and the outcomes of PTLD and graft and patient survival among adult kidney transplant recipients.

View Article and Find Full Text PDF

Update on Hepatorenal Syndrome: From Pathophysiology to Treatment.

Annu Rev Med

January 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; email:

Hepatorenal syndrome-acute kidney injury (HRS-AKI) occurs in the setting of advanced chronic liver disease, portal hypertension, and ascites. HRS-AKI is found in ∼20% of patients presenting to the hospital with AKI, but it may coexist with other causes of AKI and/or with preexisting chronic kidney disease, thereby making the diagnosis challenging. Novel biomarkers such as urinary neutrophil gelatinase-associated lipocalin may be useful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!