Motion sickness is the cause of major physical discomfort and impaired performance in many susceptible individuals. Some habituate to sea conditions, whereas others remain chronically susceptible, requiring lifelong pharmaceutical treatment. The present study sets out to investigate whether galvanic vestibular stimulation (GVS) coupled with rotatory chair stimulation could mimic sea conditions and alleviate motion sickness symptoms in individuals deemed chronically susceptible. Thirty seasickness susceptible subjects, after at least six months of regular sailing, were enrolled in a prospective, single-blind, randomised controlled study. The treatment group underwent GVS coupled with inverse phase rotatory chair impulse in sinusoidal harmonic acceleration protocol. The control group underwent a sham procedure. All subjects performed repeated velocity step tests to determine the vestibular time constant (Tc) and completed a seasickness questionnaire. The GVS rotatory chair procedure decreased the prevalence of severe seasickness. The number of motion sickness clinic visits and anti-motion sickness drug consumption were reduced in the treatment group three-month post intervention as compared to control. In addition, there was significant reduction of Tc in the treatment group. GVS coupled with rotatory chair impulse could decrease motion sickness severity, induce neurophysiological learning processes and promote habituation to seasickness in chronic susceptible subjects. This is a novel and promising non-pharmacological method to treat motion sickness susceptible individuals. Furthermore, the investigation demonstrated that adaptation to sea conditions may take place even after years of susceptibility to seasickness. This study was retrospectively registered on August 10th 2021 and assigned the identifier number NCT05004818.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-021-06263-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!