The all-ceramic RuO@LaCaCuO membrane cathode contributes to an ultra-high capacity of 21 518 mA h g over 110 cycles in Li-O batteries. A simple infiltration technique is effective for obtaining a highly active supported RuO catalyst, and a solvent with a high donor number should be preferentially chosen because it contributes to a much higher capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc02966e | DOI Listing |
Nat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institution of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
This paper emphasizes the critical role of electrolyte selection in enhancing the electrochemical performance of nonaqueous Li-O batteries (LOBs). It provides a comprehensive overview of various electrolyte types and their effects on the electrochemical performance for LOBs, offering insights for future electrolyte screening and design. Despite recent advancements, current electrolyte systems exhibit inadequate stability, necessitating the urgent quest for an ideal nonaqueous electrolyte.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB21EW, UK.
Metal-air batteries are promising energy storage systems with high specific energy density and low dependence on critical materials. However, their development is hindered by slow kinetics, low roundtrip efficiency, deficient capacity recovery, and limited lifetime. This work explores the effect of cycling protocols on the lifetime of Li-O cells, and the interplay between electrolyte composition and the upper cut-off voltage during charge.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCast), Nankai University, Tianjin 300350, China.
This study introduces an amide-based gel polymer electrolyte (GPE) for Li-O batteries, optimizing monomer and plasticizer ratios to enhance electrochemical stability and cycling performance. The GPE addresses sluggish kinetics and anode corrosion, enabling operation under atmospheric conditions, and demonstrating significant durability for practical Li-air batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!