Introduction: A potential role for the orphan G protein-coupled receptor, GPR21, in linking immune cell infiltration into tissues and obesity-induced insulin resistance has been proposed, although limited studies in mice are complicated by non-selective deletion of .

Research Design And Methods: We hypothesized that a -selective knockout mouse model, coupled with type 2 diabetes patient samples, would clarify these issues and enable clear assessment of GPR21 as a potential therapeutic target.

Results: High-fat feeding studies in mice revealed improved glucose tolerance and modest changes in inflammatory gene expression. monocytes and intraperitoneal macrophages had selectively impaired chemotactic responses to monocyte chemoattractant protein (MCP)-1, despite unaltered expression of . Further genotypic analysis revealed that chemotactic impairment was due to dysregulated monocyte polarization. Patient samples revealed elevated expression in peripheral blood mononuclear cells in type 2 diabetes, which was correlated with both %HbA1c and fasting plasma glucose levels.

Conclusions: Collectively, human and mouse data suggest that GPR21 influences both glucose homeostasis and MCP-1/CCL2-CCR2-driven monocyte migration. However, a bone marrow transplantation and high-fat feeding study in mice revealed no effect on glucose homeostasis, suggesting that there is no (or limited) overlap in the mechanism involved for monocyte-driven inflammation and glucose homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593704PMC
http://dx.doi.org/10.1136/bmjdrc-2021-002285DOI Listing

Publication Analysis

Top Keywords

glucose homeostasis
16
studies mice
8
type diabetes
8
patient samples
8
high-fat feeding
8
mice revealed
8
glucose
6
deletion gpr21
4
gpr21 improves
4
improves glucose
4

Similar Publications

It is crucial to investigate new anti-diabetic agents and therapeutic approaches targeting molecules in potential signaling pathways for the treatment of Type 2 diabetes mellitus (T2DM). The objective of the study was to investigate the total phenolic content, antioxidant capacity, α-glucosidase, and α-amylase inhibitory activities of Bolanthus turcicus (B. turcicus), as well as their cytotoxic, anti-adipogenic, anti-diabetic, apoptotic, and anti-migration potential on adipocytes.

View Article and Find Full Text PDF

Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality?

J Cardiovasc Dev Dis

December 2024

Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.

Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health.

View Article and Find Full Text PDF

The kidney plays an essential role in the proper homeostasis of glucose. In the kidney, glucose transport is carried out across cell membranes by two families of glucose transporters-facilitated diffusion glucose transporters (GLUTs) and Na(+)-dependent glucose co-transporters (SGLT family). Among the transporters, sodium-dependent glucose co-transporters play a major role in the kidney's ability to reabsorb glucose.

View Article and Find Full Text PDF

Context: Insulin sensitivity and secretion indices can be useful tools in understanding insulin homeostasis in children at risk for diabetes. There have been few studies examining the reproducibility of these measures in pediatrics.

Objective: To determine whether fasting or oral glucose tolerance test (OGTT)-derived insulin measures would be more reproducible and whether there would be differences based on weight, sex, race, and pubertal status.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!