Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593673 | PMC |
http://dx.doi.org/10.1128/mBio.02425-21 | DOI Listing |
Biomed Pharmacother
January 2025
Health Sciences Institute of China Medical University, Shenyang 110122, China. Electronic address:
Recently study has found a new form of copper-dependent death called cuproptosis, which differs from apoptosis, ferroptosis, and necrosis. The main process of cuproptosis is copper directly combined with lipid-acetylated proteins in the TCA cycle of mitochondrial response, leading to the aggregation of lipid-acetylated proteins and the loss of Fe-S cluster proteins, resulting in mitochondrial dysfunction, and eventually causing cell death. Previous studies demonstrated that an imbalance in copper homeostasis exacerbates the pathological progression of Alzheimer's disease (AD) through the induction of oxidative stress, inflammatory response, and the accumulation of Aβ deposition and tau protein hyperphosphorylation.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China.
Background: (Iron-Sulfur Cluster Assembly 1) is involved in the assembly of iron-sulfur (Fe-S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types.
View Article and Find Full Text PDFFEBS Lett
January 2025
Institute of Pharmaceutical Science, King's College London, UK.
Ecotoxicol Environ Saf
January 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, South Korea. Electronic address:
Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!