Bacterial Approaches for Assembling Iron-Sulfur Proteins.

mBio

Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA.

Published: December 2021

Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593673PMC
http://dx.doi.org/10.1128/mBio.02425-21DOI Listing

Publication Analysis

Top Keywords

fe-s proteins
24
fe-s
13
fe-s cluster
12
fe-s protein
12
cluster synthesis
8
protein assembly
8
proteins
7
bacterial approaches
4
approaches assembling
4
assembling iron-sulfur
4

Similar Publications

Recently study has found a new form of copper-dependent death called cuproptosis, which differs from apoptosis, ferroptosis, and necrosis. The main process of cuproptosis is copper directly combined with lipid-acetylated proteins in the TCA cycle of mitochondrial response, leading to the aggregation of lipid-acetylated proteins and the loss of Fe-S cluster proteins, resulting in mitochondrial dysfunction, and eventually causing cell death. Previous studies demonstrated that an imbalance in copper homeostasis exacerbates the pathological progression of Alzheimer's disease (AD) through the induction of oxidative stress, inflammatory response, and the accumulation of Aβ deposition and tau protein hyperphosphorylation.

View Article and Find Full Text PDF

Background: (Iron-Sulfur Cluster Assembly 1) is involved in the assembly of iron-sulfur (Fe-S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types.

View Article and Find Full Text PDF
Article Synopsis
  • MitoNEET, an iron-sulphur protein in the mitochondrial outer membrane, is linked to the drug pioglitazone but its exact molecular function remains unclear.
  • Researchers identified a specific site for nitric oxide (NO) access to the mitoNEET's [2Fe-2S] cluster and found that both oxygen and pioglitazone can block this access.
  • This discovery suggests a role for mitoNEET in mitochondrial signal transduction related to hypoxia, revealing new insights into how [Fe-S] clusters may function in signaling processes in eukaryotic cells.
View Article and Find Full Text PDF

Phosphine (PH) fumigation is widely used to control insect pests in stored products globally. However, intensive PH use has led to the emergence of significant resistance in target insects. To address this issue, this study investigated PH resistance mechanisms by conducting both qualitative and quantitative proteomic analyses on the whole proteome of a PH-resistant Tribolium castaneum strain (AUS-07) using LC-MS/MS.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

Article Synopsis
  • Manganese superoxide dismutase (Mn-SOD) is vital for maintaining mitochondrial function, and its absence heightens sensitivity to oxidative stress and iron limitation.
  • Deleting the Mn-SOD gene resulted in increased vulnerability to oxidative damage and made fungal spores more susceptible to destruction by human immune cells.
  • Analysis revealed that this gene deletion notably altered the oxidative stress response, impacting the regulation of genes related to iron management and protein synthesis in response to stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!