Mutations not only alter allele frequencies in a genetic pool but may also determine the fate of an evolutionary process. Here we study which allele fixes in a one-step, one-way model including the wild type and two adaptive mutations. We study the effect of the four basic evolutionary mechanisms-genetic drift, natural selection, mutation, and gene flow-on mutant fixation and its kinetics. Determining which allele is more likely to fix is not simply a question of comparing fitnesses and mutation rates. For instance, if the allele of interest is less fit than the other, then not only must it have a greater mutation rate, but also its mutation rate must exceed a specific threshold for it to prevail. We find exact expressions for such conditions. Our conclusions are based on the mathematical description of two extreme but important regimes, as well as on simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.044413 | DOI Listing |
Nat Commun
January 2025
Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.
View Article and Find Full Text PDFPublic health emergencies are critical to people's lives and health, economic development and social stability. Understanding how to respond correctly to public health emergencies is the focus of societal attention. This paper focuses on the tripartite entities of public health emergencies: local governments, pharmaceutical enterprises and the public.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.
Research Highlight: Edwards, O. M., Zhai, L.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
5-methylation (m5C) on mRNA molecules is a prevalent internal posttranscriptional modification in eukaryotes. Although m5C modification has been reported to regulate some biological processes, it is unknown whether most mRNA m5C modifications are functional. To address this question, we analyzed the genome-wide evolutionary characteristics of m5C modifications in protein-coding genes of humans and mice.
View Article and Find Full Text PDFWater Res
January 2025
MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!