Understanding degeneracy of two-point correlation functions via Debye random media.

Phys Rev E

Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.

Published: October 2021

It is well known that the degeneracy of two-phase microstructures with the same volume fraction and two-point correlation function S_{2}(r) is generally infinite. To elucidate the degeneracy problem explicitly, we examine Debye random media, which are entirely defined by a purely exponentially decaying two-point correlation function S_{2}(r). In this work, we consider three different classes of Debye random media. First, we generate the "most probable" class using the Yeong-Torquato construction algorithm [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)1063-651X10.1103/PhysRevE.57.495]. A second class of Debye random media is obtained by demonstrating that the corresponding two-point correlation functions are effectively realized in the first three space dimensions by certain models of overlapping, polydisperse spheres. A third class is obtained by using the Yeong-Torquato algorithm to construct Debye random media that are constrained to have an unusual prescribed pore-size probability density function. We structurally discriminate these three classes of Debye random media from one another by ascertaining their other statistical descriptors, including the pore-size, surface correlation, chord-length probability density, and lineal-path functions. We also compare and contrast the percolation thresholds as well as the diffusion and fluid transport properties of these degenerate Debye random media. We find that these three classes of Debye random media are generally distinguished by the aforementioned descriptors, and their microstructures are also visually distinct from one another. Our work further confirms the well-known fact that scattering information is insufficient to determine the effective physical properties of two-phase media. Additionally, our findings demonstrate the importance of the other two-point descriptors considered here in the design of materials with a spectrum of physical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.045306DOI Listing

Publication Analysis

Top Keywords

debye random
32
random media
32
two-point correlation
16
three classes
12
classes debye
12
media
9
correlation functions
8
debye
8
random
8
correlation function
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!