Heartbeat instability as auto-oscillation between dim and bright void regimes.

Phys Rev E

Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), 82234 Weßling, Germany.

Published: October 2021

We investigated the self-excited as well as optogalvanically stimulated heartbeat instability in RF discharge complex plasma. Three video cameras measured the motion of the microparticles, the plasma emission, and the laser-induced fluorescence simultaneously. Comprehensive studies of the optogalvanic control of the heartbeat instability revealed that the microparticle suspension can be stabilized by a continuous laser, whereas a modulated laser beam induces the void contraction either transiently or resonantly. The resonance occurred when the laser modulation frequency coincided with the frequency of small breathing oscillations of the microparticle suspension, which are known to be a prerequisite to the heartbeat instability. Based on the experimental results we suggest that the void contraction during the instability is caused by an abrupt void transition from the dim to the bright regime [Pikalev et al., Plasma Sources Sci. Technol. 30, 035014 (2021)PSTEEU0963-025210.1088/1361-6595/abe0a2]. In the bright regime, a time-averaged electric field at the void boundary heats the electrons causing bright plasma emission inside the void. The dim void has much lower electric field at the boundary and exhibits therefore no emission feature associated with it.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.045212DOI Listing

Publication Analysis

Top Keywords

heartbeat instability
16
dim bright
8
plasma emission
8
microparticle suspension
8
void contraction
8
bright regime
8
electric field
8
void
7
heartbeat
4
instability auto-oscillation
4

Similar Publications

This study assesses the effect of carotid sinus blockade applied with a local anesthetic on hemodynamic parameters during carotid endarterectomy (CEA) operations performed under general anesthesia. The medical records of patients who underwent CEA under general anesthesia between January 2020 and December 2022, were retrospectively reviewed. It was recorded whether the patients received carotid sinus block with 2 mL of 2% prilocaine.

View Article and Find Full Text PDF

All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.

View Article and Find Full Text PDF

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Over the past sixty years, telemetry monitoring has become integral to hospital care, offering critical insights into patient health by tracking key indicators like heart rate, respiratory rate, blood pressure, and oxygen saturation. Its primary application, continuous electrocardiographic (ECG) monitoring, is essential in diverse settings such as emergency departments, step-down units, general wards, and intensive care units for the early detection of cardiac rhythms signaling acute clinical deterioration. Recent advancements in data analytics and machine learning have expanded telemetry's role from observation to prognostication, enabling predictive models that forecast inhospital events indicative of patient instability.

View Article and Find Full Text PDF

Objective: To explore the experience of extracorporeal life support (ECLS)-assisted maintenance of brain death donors with extremely unstable hemodynamics.

Methods: We retrospectively analyzed the clinical data of 12 brain-dead donors who received ECLS in our hospital from May 2015 to May 2022 due to extremely unstable hemodynamics. The organ acquisition status was analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!