Quantum graphs and their experimental counterparts, microwave networks, are ideally suited to study the spectral statistics of chaotic systems. The graph spectrum is obtained from the zeros of a secular determinant derived from energy and charge conservation. Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The first ones are realized in experiments, since the standard junctions connecting the bonds obey Neumann boundary conditions due to current conservation. On average, the corresponding Neumann and Dirichlet eigenvalues alternate as a function of the wave number, with the consequence that the Neumann spectrum is described by random matrix theory only locally, but adopts features of the interlacing Dirichlet spectrum for long-range correlations. Another spectral interlacing is found for the Green's function, which in contrast to the secular determinant is experimentally accessible. This is illustrated by microwave studies and numerics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.045211DOI Listing

Publication Analysis

Top Keywords

microwave networks
8
secular determinant
8
boundary conditions
8
neumann dirichlet
8
spectral duality
4
duality graphs
4
graphs microwave
4
networks quantum
4
quantum graphs
4
graphs experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!