AI Article Synopsis

Article Abstract

Zygosity of diploid genome (i.e., degree to which two parental alleles of a gene have varied genetic sequences) adds another dimension to stochastic gene expression. The allelic imbalance in chromatin accessibility or divergence in regulatory sequences leads to fitness effects but the quantitative aspects thereof are largely left unexplored. We investigate diploid gene expression systems with homozygous (the same) and heterozygous (varied) combination of alleles in cis-regulatory sequences, not in structural gene loci, and characterize the zygosity-associated stochastic fluctuations in protein abundance. An emerging feat of heterozygosity is its counterintuitive capacity for genetic noise control. Especially when the noise is dominantly contributed to by the fluctuations in duty cycle ("reliability") rather than in process speed ("productivity") of gene expression machinery, its interallelic discrepancy acts to reduce the gene expression noise. These findings offer a novel insight into the rich repertoire of balancing selection enriched in the regulatory elements of immune response genes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.044401DOI Listing

Publication Analysis

Top Keywords

gene expression
20
stochastic gene
8
gene
7
expression
5
heterogeneity source
4
noise
4
source noise
4
noise stochastic
4
expression regulatory
4
regulatory heterozygote
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!