Carminic acid mitigates fructose-triggered hepatic steatosis by inhibition of oxidative stress and inflammatory reaction.

Biomed Pharmacother

Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. Electronic address:

Published: January 2022

Excessive fructose (Fru) consumption has been reported to favor nonalcoholic fatty liver disease (NAFLD). However, the molecular mechanism is still elusive, lacking effective therapeutic strategies. Carminic acid (CA), a glucosylated anthraquinone found in scale insects like Dactylopius coccus, exerts anti-tumor and anti-oxidant activities. Nevertheless, its regulatory role in Fru-induced NAFLD is still obscure. Here, the effects of CA on NAFLD in Fru-challenged mice and the underlying molecular mechanisms were explored. We found that Fru intake significantly led to insulin resistance and dyslipidemia in liver of mice, which were considerably attenuated by CA treatment through repressing endoplasmic reticulum (ER) stress. Additionally, inflammatory response induced by Fru was also attenuated by CA via the blockage of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs) and tumor necrosis factor α/TNF-α receptor (TNF-α/TNFRs) signaling pathways. Moreover, Fru-provoked oxidative stress in liver tissues was remarkably attenuated by CA mainly through improving the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2). These anti-dyslipidemias, anti-inflammatory and anti-oxidant activities regulated by CA were confirmed in the isolated primary hepatocytes with Fru stimulation. Importantly, the in vitro experiments demonstrated that Fru-induced lipid accumulation was closely associated with inflammatory response and reactive oxygen species (ROS) production regulated by TNF-α and Nrf-2 signaling pathways, respectively. In conclusion, these results demonstrated that CA could be considered as a potential therapeutic strategy to attenuate metabolic disorder and NAFLD in Fru-challenged mice mainly through suppressing inflammatory response and oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.112404DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
inflammatory response
12
carminic acid
8
anti-oxidant activities
8
nafld fru-challenged
8
fru-challenged mice
8
signaling pathways
8
acid mitigates
4
mitigates fructose-triggered
4
fructose-triggered hepatic
4

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!