A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High antibacterial performance of hydrophobic chitosan-based nanoparticles loaded with Carvacrol. | LitMetric

High antibacterial performance of hydrophobic chitosan-based nanoparticles loaded with Carvacrol.

Colloids Surf B Biointerfaces

Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Centro, C.P. 83000 Hermosillo, Sonora, Mexico. Electronic address:

Published: January 2022

Bacterial infections have become one of the top ten public health concerns worldwide. These problems are aggravated with the emergence of multi-drug resistant bacterial strains. Thus, it is necessary to adopt novel technological strategies, such as development of bionanomaterials to prevent the infection, and treat this kind of bacteria. At this regard, the chemical modification of chitosan (Cs), by the covalent attachment of a hydrocarbon chain (octanoic acid), was developed to obtain hydrophobic chitosan (HCs). Then, HCs was used to synthetize nanoparticles using the well-known ionotropic gelation approach, optimizing the parameters, such as the TPP/HCs ratio and pH solution to get stable nanoparticles. Then, carvacrol (CAR) was loaded into NPs (HCs-CAR NPs) using different concentrations of 25%, 50% and 75% (%w/w CAR/HCs). The physicochemical properties for HCs-CAR NPs prepared at 50% of CAR stood out from the rest, showing a spherical morphology, with a size of 200 nm, Z potential of 10.4 mV and encapsulation efficiency of 56.28%. These formulations were chosen to evaluate the antibacterial activity, using Gram-negative (Escherichia coli) and Gram-positive bacterial model (Staphylococcus aureus). The HCs-CAR NPs showed great activity against both bacterial models, being more effective against Gram (+) strain (S. aureus), suggesting the potential application of these NPs as novel biomaterial to treat bacterial infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112191DOI Listing

Publication Analysis

Top Keywords

hcs-car nps
12
bacterial
5
nps
5
high antibacterial
4
antibacterial performance
4
performance hydrophobic
4
hydrophobic chitosan-based
4
chitosan-based nanoparticles
4
nanoparticles loaded
4
loaded carvacrol
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!