Dissecting nephron morphogenesis using kidney organoids from human pluripotent stem cells.

Curr Opin Genet Dev

Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain. Electronic address:

Published: February 2022

During kidney development the emergence of complex multicellular shapes such as the nephron (the functional unit of the kidney) rely on spatiotemporally coordinated developmental programs. These involve gene regulatory networks, signaling pathways and mechanical forces, that work in concert to shape and form the nephron(s). The generation of kidney organoids from human pluripotent stem cells now represent an unprecedented experimental set up to study these processes. Here we discuss the potential applications of kidney organoids to advance our knowledge of how mechanical forces and cell fate specification spatiotemporally interact to orchestrate nephron patterning and morphogenesis in humans. Progress in innovative techniques for quantifying and perturbing these processes in a controlled manner will be crucial. A mechanistic understanding of the multicellular dynamic processes occurring during nephrogenesis will pave the way to unveil new mechanisms of human kidney disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2021.10.002DOI Listing

Publication Analysis

Top Keywords

kidney organoids
12
organoids human
8
human pluripotent
8
pluripotent stem
8
stem cells
8
mechanical forces
8
kidney
6
dissecting nephron
4
nephron morphogenesis
4
morphogenesis kidney
4

Similar Publications

Use of Brain Death Recipients in Xenotransplantation: A Double-Edged Sword.

Xenotransplantation

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Organ transplants are used to treat many end-stage diseases, but a shortage of donors means many patients cannot be treated. Xenogeneic organs have become an important part of filling the donor gap. Many current studies of kidney, heart, and liver xenotransplantation have used gene-edited pig organs on brain-dead recipients.

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Microplastics induce human kidney development retardation through ATP-mediated glucose metabolism rewiring.

J Hazard Mater

December 2024

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Recent research has revealed an accumulation of microplastics (MPs) in the environment and human tissues, giving rise to concerns about their potential toxicity. The kidney is a vital organ responsible for various physiological functions. Early kidney development is crucial for ensuring proper structure and function.

View Article and Find Full Text PDF

Wilms tumor primary cultures capture phenotypic heterogeneity and facilitate preclinical screening.

Transl Oncol

December 2024

Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Julius-Maximilians-University Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany. Electronic address:

Wilms tumors (WT) are characterized by variable contributions of blastemal, epithelial and stromal elements, reflecting their diverse cellular origins and genetic drivers. In vitro models remain rare, despite a growing need to better characterize tumor biology and evaluate new treatments. Using three approaches, we have now established a large collection of long-term cultures that represent this diversity.

View Article and Find Full Text PDF

Zinc pretreatment for protection against intestinal ischemia-reperfusion injury.

World J Gastrointest Surg

December 2024

State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.

Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.

Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!