Biofabrication of small diameter tissue-engineered vascular grafts.

Acta Biomater

Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia. Electronic address:

Published: January 2022

Current clinical treatment strategies for the bypassing of small diameter (<6 mm) blood vessels in the management of cardiovascular disease frequently fail due to a lack of suitable autologous grafts, as well as infection, thrombosis, and intimal hyperplasia associated with synthetic grafts. The rapid advancement of 3D printing and regenerative medicine technologies enabling the manufacture of biological, tissue-engineered vascular grafts (TEVGs) with the ability to integrate, remodel, and repair in vivo, promises a paradigm shift in cardiovascular disease management. This review comprehensively covers current state-of-the-art biofabrication technologies for the development of biomimetic TEVGs. Various scaffold based additive manufacturing methods used in vascular tissue engineering, including 3D printing, bioprinting, electrospinning and melt electrowriting, are discussed and assessed against the biomechanical and functional requirements of human vasculature, while the efficacy of decellularization protocols currently applied to engineered and native vessels are evaluated. Further, we provide interdisciplinary insight into the outlook of regenerative medicine for the development of vascular grafts, exploring key considerations and perspectives for the successful clinical integration of evolving technologies. It is expected that continued advancements in microscale additive manufacturing, biofabrication, tissue engineering and decellularization will culminate in the development of clinically viable, off-the-shelf TEVGs for small diameter applications in the near future. STATEMENT OF SIGNIFICANCE: Current clinical strategies for the management of cardiovascular disease using small diameter vessel bypassing procedures are inadequate, with up to 75% of synthetic grafts failing within 3 years of implantation. It is this critically important clinical problem that researchers in the field of vascular tissue engineering and regenerative medicine aim to alleviate using biofabrication methods combining additive manufacturing, biomaterials science and advanced cellular biology. While many approaches facilitate the development of bioengineered constructs which mimic the structure and function of native blood vessels, several challenges must still be overcome for clinical translation of the next generation of tissue-engineered vascular grafts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.11.012DOI Listing

Publication Analysis

Top Keywords

small diameter
8
biofabrication small
4
diameter tissue-engineered
4
tissue-engineered vascular
4
vascular grafts
4
grafts current
4
current clinical
4
clinical treatment
4
treatment strategies
4
strategies bypassing
4

Similar Publications

Ultrafine fiber-mediated transvascular interventional photothermal therapy using indocyanine green for precision embolization treatment.

Biomater Sci

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, China.

Photothermal treatment has attracted immense interest as a promising approach for biomedical applications such as cancer ablation, yet its effectiveness is often limited by insufficient laser penetration and challenges in achieving efficient targeting of photothermal agents. Here we developed a transvascular interventional photothermal therapy (Ti-PTT), which employed a small-sized microcatheter (outer diameter: 0.60 mm, 1.

View Article and Find Full Text PDF

This study explores the preparation of lubricating oleo-dispersions using electrospun nanofibrous mats made from low-sulfonate lignin (LSL) and polycaprolactone (PCL). The rheological and tribological properties of the oleo-dispersions were significantly modulated for the first time through the exploration of LSL/PCL ratio and electrospinning conditions such as applied voltage, distance between the tip and collector, flow rate, ambient humidity, and collector configuration. Adequate uniform ultrathin fibers and Small-amplitude oscillatory shear (SAOS) functions of the oleo-dispersions, with storage modulus values ranging from 10 to 10 Pa at 25 °C, were obtained with a flow rate of 0.

View Article and Find Full Text PDF

Background: Patients diagnosed with non-small cell lung cancer (NSCLC) usually have a poor prognosis, so it is critical to identify effective biomarkers for prognosis prediction. The aim of this study is to establish a nomogram to evaluate the prognostic significance of blood markers in patients with NSCLC and provide reference for clinical work.

Methods: A total of 486 patients with NSCLC who were admitted to hospital from January 2009 to December 2019 were retrospectively analyzed.

View Article and Find Full Text PDF

Validation of T stage classification strategy for >2 cm ground-glass opacity non-small cell lung cancer: a retrospective cohort study.

Transl Lung Cancer Res

December 2024

Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.

Background: The Lung Cancer Staging Program of the International Association for the Study of Lung Cancer (IASLC) has proposed using solid component size, rather than overall tumor size, for T-staging. However, studies focusing on patients with ground-glass opacity (GGO) lesions with a diameter larger than 2 cm are limited. This study aims to validate the T stage classification strategy recommended by IASLC in this specific and less-studied patient group.

View Article and Find Full Text PDF

Background: Visceral pleural invasion (VPI) is associated with a poor outcome in early-stage non-small cell lung cancer (NSCLC). Preoperative prediction of VPI could have an impact on surgical planning. The aim of this study was to establish a nomogram model based on computed tomography (CT) features to predict VPI in early-stage NSCLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!