The three-domain Cry toxin Cry1Ac from Bacillus thuringiensis (Bt) is an important insecticidal toxin in Bt sprays and has been used in transgenic Bt-crops to confer insect resistance. The cabbage looper, Trichoplusia ni, has developed resistance to Bt sprays in commercial greenhouses, and the resistance to Cry1Ac has been previously identified to be associated with altered expression of the APN1 and APN6 genes and be genetically linked to a locus on chromosome 15. In this study, the Cry1Ac resistance locus in T. ni was further finely mapped, and the specific Cry1Ac resistance-conferring mutation in the resistance locus was identified to be a 4 bp frameshift insertion in the ABCC2 gene by whole genome resequencing, midgut transcriptome analysis, candidate gene cDNA sequencing and mutation site genomic DNA sequencing. By CRISPR/Cas9 mutagenesis, a series of ABCC2 and ABCC3 mutant T. ni strains were generated, and the role of ABCC2 in the toxicity of Cry1Ac in T. ni was confirmed. The results from this study also showed that knockout of ABCC2 in T. ni conferred resistance to Cry1Ac at a level lower than that in the greenhouse-derived resistant T. ni strain and that the Cry1Ac resistance-associated alteration of APN1 and APN6 expression was independent of ABCC2 gene mutations, indicating that the altered expression of APN1 and APN6 was controlled by another gene mutation in Cry1Ac resistant T. ni. Furthermore, T. ni larval bioassays showed that the level of Cry1Ac resistance in F families from reciprocal crosses of the Cry1Ac resistant strain with an ABCC2 knockout CRISPR strain was significantly higher than that in ABCC2 knockout strain, indicating the presence of additional Cry1Ac resistance-conferring mutation(s) in the Cry1Ac resistant strain. Therefore, the resistance to Cry1Ac in T. ni is conferred by a mutation in ABCC2 and an additional mutation (or mutations) which leads to altered expression of APN1 and APN6. The additional Cry1Ac resistance mutation or mutations remain to be identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2021.103678 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Understanding the molecular mechanisms underlying insect resistance to (Bt) pesticidal proteins is crucial for sustainable pest management. Here, we found that downregulation of the ecdysone oxidase gene () in the normal feeding stages contributes to increased 20-hydroxyecdysone (20E) titer and mediates resistance to the Bt Cry1Ac toxin. The gene was cloned and its expression was significantly downregulated in the midgut of Bt-resistant and Cry1Ac-selected .
View Article and Find Full Text PDFPest Manag Sci
December 2024
Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil.
Background: The sunflower looper, Rachiplusia nu (Guenée), evolved resistance to the insecticidal protein Cry1Ac expressed in soybean and emerged as an important soybean pest in Brazil, requiring the application of insecticides for their control. Here, we characterized the susceptibility of Brazilian populations of R. nu to several insecticides and developed diagnostic concentrations for a proactive insect resistance management (IRM) program.
View Article and Find Full Text PDFInsects
November 2024
Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, MEE, Nanjing 210042, China.
Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance to Cry1Ab toxin by continuous screening in the laboratory.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
Hoverflies, capable of abilities providing dual ecosystem services including pest control and pollination, are exposed to insecticidal proteins from transgenic plants via pollen and prey aphids. However, the effects of such exposures on hoverflies have never been adequately assessed. Here, we investigated impacts of the most widely used biotoxin Cry1Ac on a representative hoverfly species Episyrphus balteatus through food chain transmission and active toxin exposure.
View Article and Find Full Text PDFJ Invertebr Pathol
February 2025
Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
Cry2Ab2 is a Bacillus thuringiensis (Bt) protein that has been pyramided with Cry1A.105 in transgenic maize and Cry1Ac in cotton to control some major lepidopteran pests including the corn earworm/bollworm, Helicoverpa zea (Boddie). However, the widespread occurrence of resistance of this pest to the pyramided Cry1A/Cry2A crops in the southern region of the United State has become a threat to the sustainability of the technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!