Metformin treatment of juvenile mice alters aging-related developmental and metabolic phenotypes.

Mech Ageing Dev

Department of Internal Medicine, Southern Illinois University School of Medicine, 801 N. Rutledge, P. O. Box 19628, Springfield, IL, 62794-9628, USA. Electronic address:

Published: January 2022

Accumulating evidence suggests that the influence on developmental traits might have long-term effects on aging and health later in life. Metformin is a widely used drug for treating type 2 diabetes and is also used for delaying sexual maturation in girls with precocious puberty. The current report focuses on investigating the effects of metformin on development and metabolic traits. Heterogeneous mice (UM-HET3) were treated with i.p. metformin between the ages of 15 and 56 days. Our results show that body weight and food consumption were increased in both sexes, and sexual maturation was delayed in females. Tail length and circulating insulin-like growth factor 1 (IGF1) levels were significantly increased in both sexes. No significant difference was found in insulin tolerance test, but glucose tolerance was significantly reduced in the males. Circulating adiponectin and insulin levels were altered by metformin treatment in a sex-specific manner. Analysis of quantitative insulin sensitivity check index (QUICKI) suggests that metformin treatment increased insulin sensitivity in female pups, but had opposite effect in male pups. This study revealed that early life metformin treatment alters development and metabolism of mice in both sex-specific and non-specific manners. These effects of metformin may have long-term impacts on aging-related traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8755607PMC
http://dx.doi.org/10.1016/j.mad.2021.111597DOI Listing

Publication Analysis

Top Keywords

metformin treatment
16
metformin
8
life metformin
8
sexual maturation
8
effects metformin
8
increased sexes
8
insulin sensitivity
8
treatment juvenile
4
juvenile mice
4
mice alters
4

Similar Publications

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

Background/aim: Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive   models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an   model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis.

View Article and Find Full Text PDF

A 53-year-old woman presented with an eruption on her face and body for 2 weeks that had developed first on the face before spreading to the trunk and extremities. There was burning with sunlight exposure. Her medical conditions included diabetes mellitus, vitamin D deficiency, and hyperlipidemia.

View Article and Find Full Text PDF

Contradictory results for the association between metformin intake and changes in cognitive function have been reported. We attempted to overview systematic reviews and meta-analyses showing the role of metformin, as mono or combination therapy, in cognitive performance alterations among patients with type 2 diabetes mellitus (T2DM) and to determine the quality of the evidence as well. To find the English-written reviews, a literature search was conducted on PubMed, Web of Science, Scopus, Cochrane Library, Trip, and Google Scholar by May 1, 2023.

View Article and Find Full Text PDF

Pharmacological modulation of Sigma-1 receptor ameliorates pathological neuroinflammation in rats with diabetic neuropathic pain via the AKT/GSK-3β/NF-κB pathway.

Brain Res Bull

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:

Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!