Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as new electrocatalysts and photocatalysts. The edge sites of 2D TMDs show high catalytic activity and are thus favored at the catalyst surface over TMD inert basal planes. However, 2D TMDs that predominantly expose edges are thermodynamically unfavorable, limiting the number of edge sites at the surface. Herein, we demonstrate a controllable synthesis strategy of single-layer 2D MoSe islands with a lateral size of approximately 5-12 nm on an Ag(111) substrate by pre-deposition of excess Se atoms. The surplus Se atoms react with the Ag(111) substrate and form silver selenide compounds to separate MoSe islands and further prevent MoSe islands from growing up. The nanoscale MoSe islands greatly increase the ratio of exposed edge sites relative to the basal plane sites, which leads to excellent photocatalytic activity for the degradation of a methylene blue (MB) organic pollutant. This work paves the way to limit the size of 2D TMDs at the nanoscale and enables new opportunities for enhancing the catalytic activity of 2D TMD materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr05641gDOI Listing

Publication Analysis

Top Keywords

mose islands
20
ag111 substrate
12
edge sites
12
single-layer mose
8
catalytic activity
8
mose
5
islands
5
controllable fabrication
4
fabrication photocatalytic
4
photocatalytic performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!