Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Social animals have the remarkable ability to organize into collectives to achieve goals unobtainable to individual members. Equally striking is the observation that despite differences in perceptual-motor capabilities, different animals often exhibit qualitatively similar collective states of organization and coordination. Such qualitative similarities can be seen in corralling behaviors involving the encirclement of prey that are observed, for example, during collaborative hunting amongst several apex predator species living in disparate environments. Similar encirclement behaviors are also displayed by human participants in a collaborative problem-solving task involving the herding and containment of evasive artificial agents. Inspired by the functional similarities in this behavior across humans and non-human systems, this paper investigated whether the containment strategies displayed by humans emerge as a function of the task's underlying dynamics, which shape patterns of goal-directed corralling more generally. This hypothesis was tested by comparing the strategies naïve human dyads adopt during the containment of a set of evasive artificial agents across two disparate task contexts. Despite the different movement types (manual manipulation or locomotion) required in the different task contexts, the behaviors that humans display can be predicted as emergent properties of the same underlying task-dynamic model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8592491 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260046 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!