Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on a 1 kHz, 515 nm laser system, based on a commercially available 230 W average power Yb:YAG thin-disk regenerative amplifier, developed for pumping one of the last optical parametric chirped pulse amplification (OPCPA) stages of the Allegra laser system at ELI Beamlines. To avoid problems with self-focusing of picosecond pulses, the 1030 nm output pulses are compressed and frequency doubled with an LBO crystal in vacuum. Additionally, development of a thermal management system was needed to ensure stable phase matching conditions at high average power. The resulting 515 nm pulses have an energy of more than 120 mJ with SHG efficiency of 60% and an average RMS stability of 1.1% for more than 8 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.440448 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!