Enterobacteriaceae use the periplasmic domain of the conserved inner membrane protein, PbgA/YejM, to regulate lipopolysaccharide (LPS) biogenesis. Salmonella enterica serovar Typhimurium ( Typhimurium) relies on PbgA to cause systemic disease in mice and this involves functional interactions with LapB/YciM, FtsH, and LpxC. Escherichia coli PbgA interacts with LapB, an adaptor for the FtsH protease, via the transmembrane segments. LapB and FtsH control proteolysis of LpxC, the rate-limiting LPS biosynthesis enzyme. Lipid A-core, the hydrophobic anchor of LPS molecules, co-crystallizes with PbgA and interacts with residues in the basic region. The model predicts that PbgA-LapB detects periplasmic LPS molecules and prompts FtsH to degrade LpxC. However, the key residues and critical interactions are not defined. We establish that Typhimurium uses PbgA to regulate LpxC and define the contribution of two pairs of arginines within the basic region. PbgA R215 R216 form contacts with lipid A-core in the structure, and R231 R232 exist in an adjacent alpha helix. PbgA R215 R216 are necessary for Typhimurium to regulate LpxC, control lipid-A core biogenesis, promote survival in macrophages, and enhance virulence in mice. In contrast, PbgA R231 R232 are not necessary to regulate LpxC or to control lipid A-core levels, nor are they necessary to promote survival in macrophages or mice. However, residues R231 R232 are critical for infection lethality, and the persistent infection phenotype requires mouse Toll-like receptor four, which detects lipid A. Therefore, Typhimurium relies on PbgA's tandem arginines for multiple interconnected mechanisms of LPS regulation that enhance pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853683PMC
http://dx.doi.org/10.1128/IAI.00490-21DOI Listing

Publication Analysis

Top Keywords

regulate lpxc
16
lpxc control
12
lipid a-core
12
r231 r232
12
tandem arginines
8
typhimurium regulate
8
typhimurium relies
8
pbga interacts
8
lps molecules
8
basic region
8

Similar Publications

Levels of lipopolysaccharide (LPS), an essential glycolipid on the surface of most gram-negative bacteria, are tightly controlled-making LPS synthesis a promising target for developing new antibiotics. adaptor protein LapB (YciM) plays an important role in regulating LPS synthesis by promoting degradation of LpxC, a deacetylase that catalyzes the first committed step in LPS synthesis. Under conditions where LPS is abundant, LapB recruits LpxC to the AAA+ protease FtsH for degradation.

View Article and Find Full Text PDF

serovar Typhimurium (. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition.

View Article and Find Full Text PDF

Inorganic Polyphosphate Affects Biofilm Assembly, Capsule Formation, and Virulence of Hypervirulent ST23 .

ACS Infect Dis

February 2024

Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago CP 7800003, Chile.

The emergence of hypervirulent (hvKP) strains poses a significant threat to public health due to high mortality rates and propensity to cause severe community-acquired infections in healthy individuals. The ability to form biofilms and produce a protective capsule contributes to its enhanced virulence and is a significant challenge to effective antibiotic treatment. Polyphosphate kinase 1 (PPK1) is an enzyme responsible for inorganic polyphosphate synthesis and plays a vital role in regulating various physiological processes in bacteria.

View Article and Find Full Text PDF

Gram-negative bacteria, such as , are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. . recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids.

View Article and Find Full Text PDF

Objectives: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates.

Methods: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!