AI Article Synopsis

  • Mechanical forces are used to analyze how macromolecules interact at the molecular level, particularly focusing on nonspecific interactions between cholesterol molecules.
  • Using optical tweezers, researchers discovered that the intermolecular mechanical forces (IMMF) when cholesterols form pairs are influenced by their orientation and can reach values similar to the stability of DNA structures (around 30 pN).
  • The study also revealed that the presence of β-cyclodextrin and methylated β-cyclodextrin significantly enhances the solubility of cholesterol, demonstrating that IMMF can be a valuable tool for understanding these types of interactions in detail.

Article Abstract

Mechanical force can evaluate intramolecular interactions in macromolecules. Because of the rapid motion of small molecules, it is extremely challenging to measure mechanical forces of nonspecific intermolecular interactions. Here, we used optical tweezers to directly examine the intermolecular mechanical force (IMMF) of nonspecific interactions between two cholesterols. We found that IMMFs of dimeric cholesterol complexes were dependent on the orientation of the interaction. The surprisingly high IMMF in cholesterol dimers (∼30 pN) is comparable to the mechanical stability of DNA secondary structures. Using Hess-like cycles, we quantified that changes in free energy of solubilizing cholesterol (Δ) by β-cyclodextrin (βCD) and methylated βCD (Me-βCD) were as low as -16 and -27 kcal/mol, respectively. Compared to the Δ of cholesterols in water (5.1 kcal/mol), these values indicated that cyclodextrins can easily solubilize cholesterols. Our results demonstrated that the IMMF can serve as a generic and multipurpose variable to dissect nonspecific intermolecular interactions among small molecules into orientational components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778946PMC
http://dx.doi.org/10.1021/acs.jpclett.1c03142DOI Listing

Publication Analysis

Top Keywords

mechanical force
12
small molecules
12
intermolecular mechanical
8
nonspecific interactions
8
interactions small
8
nonspecific intermolecular
8
intermolecular interactions
8
mechanical
5
interactions
5
direct measurement
4

Similar Publications

Endo 180 participates in collagen remodeling of the periodontal ligament during orthodontic tooth movement.

BMC Oral Health

December 2024

Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.

Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.

View Article and Find Full Text PDF

The escalating challenge of eliminating persistent micropollutants from aquatic environments acted as a driving force for the development of innovative Advanced Oxidation Processes (AOPs). Among various AOPs, Light-Activated Persulfate (LAP) stands out for its efficacy due to its homogeneous nature and the potential for coupling with renewable sources, leading to enhanced sustainability. From this perspective, this review summarizes the research on LAP for the degradation of micropollutants over the previous six years.

View Article and Find Full Text PDF

End-divergent architecture diversifies within-muscle mechanical action in human gluteus maximus in vivo.

J Biomech

December 2024

Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; Human Performance Laboratory, Waseda University, Saitama, Japan.

A muscle's mechanical action is affected by its architecture. However, less is known about the architecture of muscles with broad attachments: "end-divergent" muscles. Potential regional variation of fascicle orientation in end-divergent muscles suggests that their mechanical action varies by region.

View Article and Find Full Text PDF

Background: Rupture of the lumbar catheter in lumboperitoneal (LP) shunts is rare and typically occurs due to long-term mechanical stress. The authors describe an unusual case of early postoperative lumbar catheter severing after a fall on the buttocks.

Observations: A 78-year-old woman underwent LP shunt placement for communicating hydrocephalus after aneurysmal subarachnoid hemorrhage.

View Article and Find Full Text PDF

Inflammation and mechanical force-induced bone remodeling.

Periodontol 2000

December 2024

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!